
1 

 

Interatomic potential parameterization using particle swarm 

optimization: Case study of glassy silica 

Rasmus Christensen1, Søren S. Sørensen1, Han Liu2, Kevin Li2, Mathieu Bauchy2,*, Morten M. 

Smedskjaer1,* 

1 Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark 

2 Department of Civil and Environmental Engineering, University of California, Los Angeles, USA 

* Corresponding authors. E-mail: bauchy@ucla.edu (M.B.), mos@bio.aau.dk (M.M.S.) 

 

Abstract 

Classical molecular dynamics simulations of glassy materials rely on the availability of accurate, yet 

computationally efficient interatomic force fields. The parameterization of new potentials remains 

challenging due to the non-convex nature of the accompanying optimization problem, which renders 

the traditional optimization methods inefficient or subject to bias. In this work, we present a new 

parameterization method based on particle swarm optimization (PSO), which is a stochastic 

population-based optimization method. Using glassy silica as a case study, we introduce two 

interatomic potentials using PSO, which are parameterized so as to match structural features obtained 

from ab initio simulations and experimental neutron diffraction data. We find that the PSO algorithm 

is highly efficient at searching for and identifying viable potential parameters that reproduce the 

structural features used as target in the parameterization. The presented approach is very general and 

can be easily applied to other interatomic potential parameterization schemes.  
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I. Introduction 

The design of new oxide glass materials with tailored properties requires an accurate understanding 

of their composition-structure-property relationships. The missing link in establishing such 

relationships is typically the glass structure, which remains challenging to characterize and predict, 

as glasses exhibit a complex structure with features on various length scales. This includes 

coordination numbers, bond angle distributions, ring size distributions, pair distribution functions, 

etc. and is a result of the non-equilibrium, non-crystalline nature of the glassy state.1,2 Classical 

molecular dynamics (MD) simulations can serve as a computationally efficient tool to understand 

structure-property relations in multicomponent oxide glasses and to validate theoretical predictions 

as well as to provide insights into experimental observations by providing the exact location of all 

atoms, which remain extremely challenging to obtain with conventional experimental techniques. In 

addition, classical MD simulations can be used to predict, e.g., mechanical and dynamical properties 

from the simulated structure, and hereby aid in the design of new optimized structures with improved 

properties.3 

The accuracy of classical MD simulations mostly depends on that of the underlying interatomic 

potential. Besides the inherently high cooling rate and small system size compared to experiments, 

the availability of realistic potentials is often the main bottleneck limiting the use of classical MD 

simulations for a range of glass families4. Therefore, parameterization of new and improved force 

fields is an important task within glass science. The parameterization of a new force field usually 

involves three main steps: (i) selection of an appropriate analytical form of the force field, (ii) 

selection of one or more features of a reference system that the force field should be parameterized 

to replicate (i.e., the optimization cost function), and (iii) optimization of the force field parameter 

values to replicate the selected features (i.e., minimize the cost function). The parameterization of a 

force field is therefore typically an optimization problem, wherein a given cost function needs to be 

minimized. Here, the cost function describes the difference in a feature of the simulated system and 
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that of a reference system. The latter can be experimental data or data from another more accurate 

simulation technique such as ab initio molecular dynamics (AIMD).4 

The accuracy of a parameterized potential greatly depends on the two first steps and these steps 

indeed receive the most attention in the literature4. Nonetheless, the optimization algorithm in step 

(iii) is also important, but has not received much attention. Conventional gradient-based optimization 

techniques like conjugate gradient, steepest descent, and Levenberg Marquardt are commonly used 

for optimization of the cost function in potential parameterizations.5,6 However, these algorithms can 

be inefficient at exploring rough cost landscapes, as they only progress towards the first local 

minimum found and will thus not explore the cost landscape, unless the optimization process is 

reinitiated by the user.5,7 As parameterization of a new potential involves a large number of 

parameters, cost landscapes can be highly non-convex and exhibit a large number of local minima, 

thereby rendering traditional optimization methods inefficient or subject to bias. It is thus interesting 

to investigate alternative and possibly more efficient optimization techniques for optimization of the 

cost function, as it could enable faster iteration on the design of cost functions and hence faster 

exploration and development of new interatomic potentials.  

A recent attempt to use an alternative optimization method for potential parameterization is that 

of Liu et al.7, who used Bayesian optimization, a type of machine learning, to successfully 

parameterize an interatomic potential for glassy silica. This was done by comparing the partial pair 

distribution functions (PDFs) of a silica melt at 3600 K obtained from classical MD and AIMD 

simulations, similar to the work of Carré et al.6. Another interesting optimization method for potential 

parameterization is particle swarm optimization (PSO). PSO is a stochastic population-based 

optimization method with a straightforward mechanism that, unlike, for instance, gradient descent, 

does not require any gradient information, making it easy to implement for most optimization 

problems. As the PSO method only contains few algorithm parameters, which are widely discussed 

in literature8, it is suitable as a non-biased optimization method where the role of personal intuition 
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during optimization is reduced. PSO has previously been applied for parametrization of potentials for 

crystalline metals and alloys9,10, but not yet on glasses.  

In this work, we present a new methodology for efficient parameterization of interatomic pair 

potentials for glasses based on PSO. Here glassy silica, an archetypal ionocovalent composition, is 

chosen as the model system, while the well-known two-body Buckingham potential is chosen as the 

analytical formulation of the force field, as it has previously been shown to accurately describe glassy 

silica in other potentials.6,11,12 Specifically, we parametrize two force fields. The first, referred to as 

PSO-1, is parameterized with respect to AIMD structural data of liquid silica at 3600 K, analogous 

to what has been done recently for the machine learning force field7. The PSO approach is suitable in 

this case, since the cost landscape resulting from this parameterization method is known to be rough 

and difficult for gradient based methods to optimize, while enabling easy comparison to the recent 

machine learning optimization approach.7 The second, referred to as PSO-2, is parameterized  from 

comparison to experimental neutron scattering data of glassy silica13. To this end, we note the inherent  

difficulties in potential parameterization from experimental data of the glassy state due to the 

difference in cooling rate between simulations and experiments. However, the goal of these two 

parameterization methods is not to produce a state-of-the-art potential for silica glass or offer new 

physical insights into the behavior of glassy silica, but rather to highlight the efficiency of the PSO 

algorithm and to explore the nature of the resulting potentials. From these optimizations, we show 

that the PSO-based method allows us to quickly and robustly identify force field parameters, which 

accurately replicate the selected features of the AIMD and experimental data. 

 

II. Methods  

A. Simulations of silica 

All molecular dynamics simulations were conducted using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) program developed by Sandia National Laboratories.14 We 
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used the Buckingham functional form for the interatomic potentials parameterized in this work6,11, 

including a short-range r24 repulsive term,  

𝑈(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝑟𝑖𝑗𝜖0

+ 𝐴𝑖𝑗 exp (−
𝑟𝑖𝑗

𝜌𝑖𝑗

) −
𝐶𝑖𝑗

𝑟𝑖𝑗
6 +

𝐷𝑖𝑗

𝑟𝑖𝑗
24 , (1) 

where 𝑟𝑖𝑗is the distance between atom i and j, 𝑞𝑖 and 𝑞𝑗  are the partial charges of atom i and j 

(ensuring 𝑞𝑂 = −
𝑞𝑆𝑖

2
), respectively, and 𝜖0  is the permittivity of vacuum, while 𝐴𝑖𝑗 ,  𝜌𝑖𝑗, 𝐶𝑖𝑗 and 𝐷𝑖𝑗 

are the potential parameters describing the short range interactions. The last term  
𝐷𝑖𝑗

𝑟𝑖𝑗
24  was added to 

prevent the “Buckingham catastrophe”. A cutoff of 8 Å was used for short-range interactions, while 

the long-range Coulombic interactions were evaluated using the damped shifted force model15 with 

a cutoff of 8 Å and damping parameter of 0.25, as also used elsewhere.7 We note how this 

approximate Coulombic interaction may result in a slight decrease in accuracy, yet significantly 

lowers the computational cost (up to ten times faster compared to using Ewald summation on the used 

hardware), thus making both parameterization and resulting MD simulations significantly faster. 

Such approximation has previously been used successfully to produce interatomic pair potentials of 

oxide glasses5,7, and has been shown to only have a minor effect on the accuracy when used in 

simulations with other potentials.16,17 Interactions between silicon atoms were evaluated as purely 

Coulombic, as done in several previous silica potentials7,11,12,18, due to the short range interactions of 

this atom pair only having a small effect on the accuracy of the final potential.19 The values of 𝐷𝑖𝑗 

were fixed in all the simulations based on values from Carré et al.,6 (𝐷𝑖𝑗  = 113, 29, and 3,423,200 

eV·Å24 for O–O, Si–O, and Si–Si interactions, respectively). This was done since this term only 

prevents unrealistic overlap of atoms.  

All simulations were conducted with a timestep of 1 fs and using an initial configuration of 1000 

SiO2 units (3000 atoms) in a periodic cubic simulation box with a side length of 35.661 Å, 

corresponding to a density of 2.2 g·cm-3. Simulations conducted for recording structural data of silica 

in the liquid phase were performed by first relaxing the box for 10 ps at 3600 K in the NVT ensemble, 
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where after the liquid silica structure was recorded as a statistical average over 10 ps (sampling every 

timestep).  

Silica glasses were simulated using the following melt-quench procedure, with all procedures 

conducted in the NPT ensemble. The system was first melted at 3600 K at for 100 ps to erase any 

history of the initial state. The system was then quenched to 300 K with a cooling rate of 1 K·ps-1, 

producing a disordered glass structure. A hydrostatic pressure of 0.1 GPa was applied during melting 

for the parameterization of PSO-2 to avoid the system entering the gas phase at very high 

temperatures, while zero pressure was applied for all other potentials.  The pressure of 0.1 GPa was 

ramped down to 10-4 GPa during the quenching process. The resulting glasses were relaxed for 100 

ps at 300 K and 10-4 GPa pressure, before the simulated glass structures were recorded for another 

100 ps for statistical averaging (sampling every 1 ps).  

For comparison, we also conducted simulations with several alternative potentials from 

literature, namely the BKS potential by Van Beest et al.11, the CHIK potential by Carré et al.6, the 

SHIK potential by Sundararaman et al.5, and the machine learning (ML) potential by Liu et al.7. 

Simulations with these alternative potentials were conducted according to the requirements described 

in those previous studies5–7,11, but with the simulation procedure for obtaining liquid and glassy silica 

as described above. However, a slight modifications was made for the BKS potential, as the cutoff 

for the short range interactions was set to 5.5 Å and the long range interactions were evaluated with 

the PPPM algorithm using an accuracy of 10-5, as reported elsewhere17.  

 

B. Optimization cost functions 

Next, we consider the optimization cost function used in this work. For the parametrization of 

potentials based on the simulated structure of liquid silica, the difference between partial PDFs 

(described in Section II.C) from classical MD and AIMD was used. Specifically, we used partial 
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PDFs from Car-Parrinello molecular dynamics of liquid silica at 3600 K.7 The difference between 

the partial PDFs obtained from classical MD and AIMD was defined as an 𝑅𝜒

𝑔(𝑟)
 error6,7, 

𝑅𝜒

𝑔(𝑟)
= 100% ⋅ √𝜒SiO

2 +𝜒OO
2 +𝜒SiSi

2

3
, (2) 

where 𝜒𝑖𝑗
2  capture the level of agreement between each partial PDF obtained by MD and its 

counterpart obtained by AIMD as described by, 

𝜒𝑖𝑗
2 =

∑ [𝑔𝑖𝑗
AIMD(𝑟) − 𝑔𝑖𝑗

MD(𝑟)]
2

𝑟   

∑ [𝑔𝑖𝑗
AIMD(𝑟)]

2

𝑟

, (3) 

  

where 𝑔𝑖𝑗
AIMD(𝑟)  and 𝑔𝑖𝑗

MD(𝑟) are the partial PDFs for the pair of atoms 𝑖  and 𝑗  from AIMD and 

classical MD simulations, respectively. As 𝑅𝜒

𝑔(𝑟)
captures the total level of agreement between partial 

PDFs from classical MD and AIMD, it was used as a cost function for parametrizing potentials with 

PSO.  

Similarly, for parameterizing potentials based on the simulated glass structure, the level of 

agreement between the differential correlation function 𝐷(𝑟) (described in Section II.C) of silica 

glasses based on neutron scattering experiments13 and from the present simulations was compared 

through an 𝑅𝜒
𝐷(𝑟)

 error as, 

𝑅𝜒
𝐷(𝑟)

= 100% ⋅ √
∑ [𝐷(𝑟)exp − 𝐷(𝑟)sim)]2

𝑟   

∑ [𝐷(𝑟)exp]2
𝑟

. (4) 

  

We note that the 𝑅𝜒
𝐷(𝑟)

 function is not directly comparable to 𝜒𝑖𝑗
2 . That is, 𝑅𝜒

𝐷(𝑟)
 puts a more 

significant weight on medium-range order structure than 𝜒𝑖𝑗
2 . This is because D(r)→ 0 for 𝑟 → ∞, in 

contrast to the continuously increasing denominator in Eq. (3) as gij(r)→ 1 for 𝑟 → ∞ because of the 

lack of long-range order in the glassy structures. 

 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
41

18
3

 21 D
ecem

ber 2024 21:44:17



8 

 

C. Pair distributions functions and structure factors 

To compare the structure of the simulated silica liquids and glasses with experimental data from 

neutron diffraction, or structure data from ab initio simulations, we computed the partial PDFs of the 

system as, 

𝑔𝑖𝑗(𝑟) =
𝑛𝑖𝑗(𝑟)

4𝜋𝑟2 d𝑟𝜌0

, (5) 

where 𝑛𝑖𝑗 (𝑟) is the number of particles of type j between the distances r and r + dr from a particle of 

type i, while 𝜌0  is the average atomic number density20. From the partial PDFs, the total PDF can be 

calculated as, 

𝐺(𝑟) = (∑ 𝑐𝑖𝑏𝑖̅

𝑛

𝑖=1

)

−2

∑ 𝑐𝑖𝑐𝑗𝑏𝑖𝑏𝑗𝑔𝑖𝑗 (𝑟)

𝑛

𝑖,𝑗=1

, (6) 

  

where 𝑐𝑖 is the fraction of atoms i and 𝑏𝑖 is the neutron scattering length of atom type i. 20 For silica, 

the neutron scattering lengths are 4.1491 and 5.803 for silicon and oxygen, respectively. 21  

To enable comparison between simulated and experimental PDFs, broadening of the simulated 

PDF is needed due to the broadening of the experimental PDF as caused by the finite scattering vector 

cutoff of the Fourier transform of the structure factor. To do so, the PDF was convoluted by a 

normalized Gaussian distribution with a full width at half-maximum (FWHM) given by FWHM = 

5.437/Qmax, where Qmax is the maximum wave vector used in the diffraction experiment.22,23  

From the total pair distribution function, the differential correlation function 𝐷(𝑟), sometimes 

also denoted as the reduced pair distribution function, was calculated as 24, 

𝐷(𝑟) = −4𝜋𝜌0 𝑟 + 4𝜋𝜌𝑟𝐺(𝑟). (7) 

For further comparison of potentials, the total neutron structure factor (𝑆(𝑄)) was calculated. To this 

end, the Faber-Ziman partial structure factors 𝑆𝑖𝑗(𝑄) were first calculated from the partial PDFs as, 
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𝑆𝑖𝑗(𝑄) = 1 + 𝜌0 ∫ 4𝜋𝑟2 [𝑔𝑖𝑗(𝑟) − 1]
sin (𝑄𝑟)

𝑄𝑟
𝑑𝑟

𝑟max

0

, (8) 

where Q is the scattering vector and 𝑟max  is the maximum radius for the integration (in this case half 

the simulation box size because of periodic boundary conditions). The total neutron structure 

factor, 𝑆(𝑄), was then calculated from the partial structure factors as, 

𝑆(𝑄) = (∑ 𝑐𝑖𝑏𝑖̅

𝑛

𝑖=1

)

−2

∑ 𝑐𝑖𝑐𝑗𝑏𝑖𝑏𝑗𝑆𝑖𝑗(𝑄)

𝑛

𝑖,𝑗=1

. (9) 

To enable comparison between 𝑆(𝑄) predicted by different potentials, we introduce an 𝑅𝜒

𝑆(𝑄)
 error 

similar to Eq. (4), 

𝑅𝜒
𝑆(𝑄)

= 100% ⋅ √
∑ [𝑆(𝑄)exp − 𝑆(𝑄)sim)]2

𝑟   

∑ [𝑆(𝑄)exp]2
𝑟

, (10) 

where 𝑆(𝑄)exp is taken from literature13. 𝑆(𝑄) data from Q = 0.85 to 35 Å-1 was included in the 

calculation of 𝑅𝜒
𝑆(𝑄)

. 

 

D. Calculation of vibrational density of states 

The vibrational density of states (VDOS) was calculated by first determining the dynamical matrix 

(𝐃), i.e., the matrix with elements as 

𝐷𝑖,𝑗
𝛼,𝛽

=
1

√𝑚𝑖𝑚𝑗

(
𝜕2 𝑈

𝜕𝑢𝑖,𝛼𝜕𝑢𝑗,𝛽

) (11) 

through a finite displacement method. Here, m is mass of the atoms, U is the total potential energy, α 

and β represent the Cartesian indices, i and j are atomic indices, and u is atomic displacement. 

Hereafter the eigenvalues, corresponding to the frequencies of the eigenmodes, were obtained by 

diagonalizing the matrix by solving the matrix equation,  

𝐞 ⋅ Ω = 𝐃 ⋅ 𝐞, (12) 
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where e is the matrix of eigenvectors and Ω is the diagonal matrix with 3N squared eigenvalues, 𝜔2, 

where N is the number of atoms in the system. These eigenvalues correspond to the vibrational 

frequencies of the eigenmodes and hence describe the VDOS of the structure. 

 

E. Calculation of elastic properties  

Besides comparison of structural features, we also calculated the elastic properties of the quenched 

silica glasses for the new PSO potentials and selected potentials from literature. These quenched 

glasses were subjected to stepwise elongations of ε = 0.0001 = 0.01% in the tensile directions xx, yy, 

and zz, as well as in the shear directions xy, xz, and zy under the assumption of isotropic structures. 

Between each elongation step, the structures were relaxed for 2 ps, before measuring the average 

stress in the given direction over 1 ps (sampling at every time step). Both simulation steps were 

conducted at 300 K in the NVT ensemble. We performed 60 elongations in each direction. From the 

resulting stress-strain curves, the elastic constants were obtained by linear regression, where C11 was 

evaluated as an average of C11, C22, and C33, and C44 as an average of C44, C55, and C66. Finally, C12 

was calculated as C12 = C11 – 2C44 under the assumption of isotropy. This enabled a calculation of 

Young’s modulus (E) and Poisson’s ratio (ν) as follows 25, 

𝐸 =
(𝐶11 − 𝐶12)(𝐶11 + 2𝐶12)

𝐶11 + 𝐶12

, (13) 

  

𝜈 =
𝐶12

𝐶11 + 𝐶12

. (14) 

 

F. Calculation of ring size distribution 

The ring size distribution in the simulated glasses was calculated by considering the primitive rings, 

i.e., the shortest closed loop that includes a given Si atom and two of its nearest neighbor O atoms. 
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We have used the R.I.N.G.S. code26 to determine this, up to a ring size of 12—wherein the ring size 

is defined in terms of the number of Si atoms the ring is comprised of. 

 

G. Force field optimization with PSO 

Particle swarm optimization (PSO) is a swarm intelligence optimization technique developed by 

Eberhart and Kennedy, which mimics the social behavior of animals such as bird flocking.8 PSO 

offers an efficient method to identify the minimum position of a function with n input variables. In 

this approach, each unique set of parameters is represented by a point in an n-dimensional space, 

where n is the number of variables. Such points are denoted as particles (e.g., birds exploring a given 

space). These particles traverse the n-dimensional solution space of a given optimization problem, 

for several iterations seeking an optimal solution (that is, the global minimum of the target function). 

In PSO, all particles are initially placed randomly in the given search space within a predetermined 

set of boundaries, the values of which depend on the optimization problem.27 

 

 

Figure 1: Movement of a particle in PSO and the velocity update. Figure is adapted from ref. 28 

 

The movement of a particle in two dimensions with PSO is illustrated in Figure 1. Particle positions 

are adjusted at each iteration from a set of stochastic velocities calculated at the current iteration. 

These velocities are vectors representing particle-movements in the n-dimensional solution space. 
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The velocity is updated according to three factors: (i) the personal best position (𝑝𝑔 ), i.e., the best 

position (wherein the optimization function is as small as possible) visited by the particle itself so far, 

(ii) the best position found by the particle’s neighbors (𝑝𝑛 , see below), i.e., the best position visited 

by a neighboring particle so far, and (iii) the inertia of the particle (𝑣𝑖𝑗(𝑡 − 1)), i.e., the velocity of 

the particle at the previous iteration. From these factors, the velocity of particle i in dimension j at 

iteration t (𝑣𝑖𝑗(𝑡)) can be calculated, 

𝑣𝑖𝑗(𝑡) = 𝑤 ⋅ 𝑣𝑖𝑗(𝑡 − 1) + 𝑐1𝑟1,𝑗 (𝑝𝑖(𝑡) − 𝑥𝑖𝑗(𝑡 − 1)) + 𝑐2𝑟2,𝑗 (𝑝𝑛(𝑡) − 𝑥𝑖𝑗(𝑡 − 1)), (15) 

where (𝑐1, 𝑐2) are acceleration coefficients, 𝑤 is an inertia weight, (𝑟1,𝑗 , 𝑟2,𝑗) are random numbers in 

the range [0,1], 𝑣𝑖𝑗(𝑡 − 1)  is the previous velocity of the particle, and 𝑥𝑖𝑗(𝑡 − 1)  is the previous 

particle position. Based on the calculation of velocity, the particle’s position at iteration j (i.e., 𝑥𝑖𝑗(𝑡)) 

can be calculated, 

𝑥𝑖𝑗(𝑡) = 𝑥𝑖𝑗(𝑡 − 1) + 𝑣𝑖𝑗(𝑡). (16) 

This process is then repeated either for a certain number of iterations, or until the entire swarm has 

converged toward the same minimum.8,28,29 Of course, it should be noted that the best minimum found 

with the PSO algorithm may not be the global minimum.  

 Several methods for determining the neighborhood of particles in PSO have been proposed. The 

original PSO algorithm uses the so-called global best model, which is based on a global neighborhood 

topology, where all particles are neighbors with each other (Fig. 2a).29,30 A different approach is the 

so-called local best model, which is based on a local neighborhood ring topology (Fig. 2b).29,30 In the 

latter case, particles are only neighbors to their immediate neighbors determined according to the 

particles index, i.e., the second particle is neighbor with the first and third particles. 
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Figure 2: Different neighborhood topologies for PSO (a) global best topology and (b) local best 

topology. Figure is adapted from ref.29 

 

In general, the global best topology has been found to converge very quickly toward a minimum, 

but also tends to fail to find the best region of the search space.29,31 We have found the same in 

preliminary calculations for this study. The local best model is comparatively slower, but able to 

explore more of the parameter landscape and has thus been shown to give improved optima for rough 

multimodal cost functions.29,31 This improved performance is achieved, since the ring topology slows 

down the flow of information, enabling particles to collaboratively search several regions of the 

search space simultaneously.29,31 Consequently, we used the local best neighborhood topology in this 

study. 

We chose values of 𝑐1 = 𝑐2 = 1.49618 and 𝑤 = 0.7298 for the algorithm based on standard 

values from literature to ensure convergence of the swarm8,32, while 21 particles were used for the 

optimizations. For the first iteration, all particle positions were randomly initialized inside a set of 

search space boundaries and given a random velocity of 5% of the search space in each direction. 

Table I summarizes the search space boundaries used for random initialization of the particle 

positions.  

 

                                         (a) global best topology (b) local best topology 
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Table I: Search space boundaries for the present silica potential parameterization with PSO. 

 AO-O (eV) 𝜌O–O (Å) CO-O (eV⋅Å6) ASi-O (eV) 𝜌Si-O (Å) CSi-O (eV⋅Å6) qSi (-) 

Min value 0 0 0 0 0 0 1 

Max value 2000 1 200 60000 0.5 250 3 

 

Due to the random initial placement of particles in the search space, and the stochastic nature of 

the PSO algorithm, several simulations in an optimization will not be completed due to “bad 

dynamics”, making it impossible to evaluate the cost of these particle positions. In these cases, the 

cost was set to an arbitrarily high cost not achievable from completed simulations. When initializing 

the particle swarm, we ensured that pn can be determined for all particles from completed simulations, 

i.e., every particle either completed its simulation or had a neighbor that completed its simulation. 

This was achieved by ensuring at least one third of initial particles completed their simulation and 

randomizing the neighbors of particles until this requirement was achieved. If a particle has only 

tested particle positions, for which simulations could not be completed, we used its newest position 

(i.e., from the previous iteration) as its 𝑝𝑖 value. 

A velocity clamp 𝑉max,𝑗  of 100% of the search space was used to limit the maximum value of 

the velocity in each direction. Furthermore, an absorbing wall boundary handling method 33 was used 

for the lower search space boundary to restrict the PSO algorithm to only consider positive values of 

𝐴𝑖𝑗, 𝜌𝑖𝑗,  and 𝐶𝑖𝑗, as negative values are physically unrealistic. In this boundary handling method, 

when a particle was about to cross the lower boundary of the search space in a dimension, the value 

of the particle is instead set to the value of the lower boundary with its velocity zeroed in that 

dimension. 

 

III. Results and Discussion 
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In this section, we will first compare the performance of the two potentials parameterized with 

PSO, described by the value of the cost function 𝑅𝜒 , with alternative silica potentials from the 

literature. Second, we will evaluate the ability of the new PSO potentials to describe the features of 

silica glass, which were not included in the cost function. This is done by comparing the predicted 

elastic properties, bond angle distributions, structure factors, ring size distribution, and vibrational 

properties of silica glasses simulated with the present PSO method as well as literature potentials and 

experimental data. The obtained force field parameters after the optimization of the two proposed 

cost functions are listed in Table II. Potential curves for the pair interactions of the PSO potentials 

compared to select potentials from literature can be found in Supplementary Figure S1. 

 

Table II: MD force field parameters of the two PSO-based interatomic potentials. 

Potential-ID AO-O (eV) 𝜌O-O (Å) CO-O (eV⋅Å6) ASi-O (eV) 𝜌Si-O (Å) CSi-O (eV⋅Å6) qSi (-) 

PSO-1 883 0.360 50.4 28954 0.185 111.9 1.79 

PSO-2 1522 0.366 17.4 44409 0.187 201 2.35 

 

We observe that the potential parameters obtained for PSO-1 and PSO-2 are significantly 

different. For PSO-1, the partial charge of silicon is 1.79, close to the values obtained by the SHIK5, 

CHIK6, and ML7 potentials, all of which are at least partially parameterized to replicate structural 

features of liquid silica. Meanwhile we observe a silicon charge of 2.35 for PSO-2, which is close to 

the value in the BKS11 potential. Using the terminology of “hard” and “soft” potentials presented by 

Liu et al.34, we may categorize the PSO-1 potential as a “soft” potential given its low partial silicon 

charge (qSi < 2), while the PSO-2 potential can (almost) be classified as a “hard” potential due to its 

higher partial silicon charge (qSi ≥ 2.4). The importance of this classification will be discussed in 

Section III.C. 
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A. Performance of the PSO-1 potential  

First, we compare the ability of the new PSO-1 potential to describe the partial PDFs in the SiO2 melt 

at 3600 K relative to that of some reference potentials (Table III). We find that the PSO-1 potential 

exhibits the lowest obtained global 𝑅𝜒
𝑔(𝑟)

 of 7.5%, which is an improvement relative to the alternative 

potentials. As the PSO-1 has specifically been trained on these data, it is expected to have a low 𝑅𝜒
𝑔(𝑟)

, 

but it is notable that its 𝑅𝜒
𝑔(𝑟)

 is lower than that of the ML potential7, which has been parameterized  

with the same cost function. Moreover, the SHIK5 and CHIK6 potentials both include parameters for 

the Si – Si interaction, making these potentials more complex. 

 

Table III: Comparison of the new PSO-1 potential (optimized against ab initio equilibrium liquid  

silica structure) with selected alternative potentials from literature, namely, BKS11 , ML7, SHIK5 , 

and CHIK6. Average standard deviation of the global 𝑅𝜒
𝑔(𝑟)

 is 0.1%. 

Potential-ID 𝑅𝜒
SiO(%) 𝑅𝜒

OO(%) 𝑅𝜒
SiSi(%) Global 𝑅𝜒

𝑔(𝑟)
(%) 

PSO-1 7.2 3.6 10.2 7.5 

BKS 21.3 12.8 15.4 17.0 

ML 7.2 3.5 12.9 8.7 

SHIK 7.4 3.6 10.7 7.8 

CHIK 13.0 6.0 11.9 10.7 

 

Figure 3 shows the partial PDFs Si–O, O–O, and Si–Si as calculated based on the PSO-1 

potential. For comparison, partial PDFs from AIMD are shown along with the partial PDFs predicted 

by the ML7 and BKS11 potentials. The PSO-1 potential offers a very good description of the AIMD 

partial PDFs and generally resemble those predicted by the ML potential. The largest difference 

between the PSO-1 and AIMD partial PDFs come from the Si–Si partial PDF, where the average Si–
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Si distance is slightly higher in the AIMD simulation. As reported in Table III for all the applied 

potentials, the Si–Si partial PDF has a major contribution to the global 𝑅𝜒
𝑔(𝑟)

, with 𝑅𝜒
SiSi  above 10% 

in every case. This might therefore be attributed to an intrinsic limitation of the Buckingham potential 

form.  

 

 

Figure 3: (a) Si–O, (b) O–O, and (c) Si–Si partial PDFs in liquid silica (at T = 3600 K) predicted by 

PSO-1 (green line) compared with the BKS11 (red line) and ML7 (blue line) potentials as well as the 

ab initio reference (black line)7. 

 

B. Performance of the PSO-2 potential 

Next, we compare the ability of the new PSO-2 potential to describe the experimental differential 

correlation function (D(r)) of silica glass relative to that of some reference potentials. In Figure 4, we 

observe that the PSO-2 potential describes the experimental D(r) data very well. The 𝑅𝜒
𝐷(𝑟)   for each 

potential is listed in Table IV, with the PSO-2 potential yielding a  𝑅𝜒
𝐷(𝑟)

 value of 20.9%. We note 

that the 𝑅𝜒 functions from Eqs. (2) and (4) for calculation of 𝑅𝜒
𝑔(𝑟)

and  𝑅𝜒
𝐷(𝑟)

, respectively, employ 

different scattering functions for comparison, thus not enabling direct comparison between the 

obtained values of these two 𝑅𝜒. Compared to the SHIK and BKS potentials (with 𝑅𝜒
𝐷(𝑟)  values of 

36.2% and 30.8%, respectively), this is a significant improvement. It is, however, not surprising as     
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the SHIK and BKS potentials were optimized against different cost functions. Nonetheless, it 

indicates that the PSO-2 potential generates a realistic silica glass structure, better than that offered 

by currently available potentials. 

 

 

Figure 4: Differential correlation function, D(r), of quenched silica glass predicted by the present 

PSO-2 potential compared with experimental reference data (black line)13 as well as the D(r) 

predicted by the SHIK5 (blue line) and BKS11 (red line) potentials. 

 

Table IV: Predicted 𝑅𝜒

𝐷(𝑟)
 error, density (𝜌), Young’s  modulus (E), and Poisson’s ratio (v) of silica 

glasses structures obtained with the PSO potentials and selected potentials from the literature (BKS 

11, ML7, and SHIK5). Comparison with experimental data from literature35 is also included. 

Potential-ID 𝑅𝜒
𝐷(𝑟)

 𝜌 (g·cm-3) E (GPa) 𝑣 (-) 

Experimental - 2.20 72.2 0.168 

PSO-1 43.3 2.12 63.1 0.248 
 

PSO-2 20.9 2.05 
 

154.4 
 

0.246 
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SHIK 36.2 2.22 67.3 0.222 
 

BKS 30.8 2.25 87.0 
 

0.243 
 

ML 43.7 2.17 63.4 0.249 

 

C. Comparison of predicted features  

To determine the ability of new PSO-based potentials to reproduce different features of silica glass, 

we report the MD-simulated density, Young’s modulus, and Poisson’s ratio of silica glasses using the 

PSO-1 and PSO-2 potentials (Table IV). We also include a comparison with several alternative 

potentials and experimental results. We observe that the PSO-2 potential overestimates the Young’s 

modulus of silica glass by a factor of ~2. In contrast, the PSO-1 potential predicts a more realistic 

modulus of 63.1 GPa. The inability of the PSO potentials to accurately reproduce the mechanical 

properties is not surprising, considering that these potentials were not parameterized to replicate these 

properties. 

The overestimation of Young’s modulus by PSO-2 may be because this potential has been 

optimized against structural features of the nonequilibrium glass phase. Glasses prepared by MD 

simulations will typically be very disordered and feature very high fictive temperatures36 due to the 

high cooling rate applied in the simulation. The force field might therefore need to be “harder” than 

expected to force the glass to become as ordered as an experimental glass (prepared with slower 

cooling rate), thus leading to an overestimation of the interatomic bond strength. As such, the good 

agreement between experimental and simulated structural features for PSO-2 might be a consequence 

of a mutual compensation of errors (e.g., overestimated bond strength compensates the high cooling 

rate). This compensation could affect the potential’s ability to reproduce properties such as Young’s 

modulus, which depend on the curvature of the potential minimum, as this curvature could be affected 

by this compensation. An alternative explanation could be that the PSO-2 potential is only 

parameterized to replicate the glass structure at room temperature. The shape and curvature of the 
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potential may only have a minor influence on this replication, as this property is mostly determined 

by the position of the potential well. In contrast, as the parameterization of the PSO-1 potential is 

conducted at 3600 K, atoms will move around their equilibrium position, thus better exploring the 

potential shape and with a larger influence on property used for parameterization. This, in turn, leads 

to an improved prediction of the curvature around the potential minimum and therefore the elastic 

properties of the glass. As such, while parameterizing potentials to reproduce the experimentally 

observed glass structure can provide a good replication of this structure, this approach will limit the 

ability of the potential to predict other properties which are not directly dependent on these structural 

details of the glass, but rather a function of the shape of the potential well (e.g., depth, curvature, or 

degree of asymmetry).  

This is further supported by considering the calculated VDOS from PSO-2 as shown in 

Supplementary Figure S2b. We observe that the PSO-2 potential fails to capture the features of the 

VDOS from ab initio simulation. In contrast, the VDOS calculated using the PSO-1 potential 

(Supplementary Figure S2a) shows relatively good agreement with the ab initio MD data. 

Comparisons of these ab initio VDOS data with that calculated from the SHIK and BKS potentials 

are also presented in Supplementary Figure S2, with SHIK showing the best agreement, similar to 

the performance of the PSO-1 potential. The fact that the PSO-1 potential shows good agreement 

with reference VDOS data is interesting, given the difficulty of many interatomic pair potentials in 

correctly predicting the vibrational properties of glass systems and when considering that the PSO-1 

potential was not specifically optimized against these data. The fact that PSO-2 overestimates the Si–

O stretching frequency in the VDOS is consistent with the facts that  the potential (i) overestimates 

the stiffness of the glass, (ii) presents a very sharp, deep Si–O interaction as seen in Supplementary 

Figure S1, and (iii) underestimates the increase in density of the glass under pressure (see Figure 8). 

Furthermore, we observe a close similarity between the properties predicted by simulations using 

the PSO-1, SHIK, and ML7 potentials (Table IV). Even though these potentials have an identical 
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potential structure, the potential parameters are significantly different. It is therefore notable that these 

potentials give an almost identical description of silica glass might be because these potentials can all 

be classified as “soft”34 with a low silicon partial charge. This exemplifies the fact that the 

optimization cost function is extremely rough and exhibits many competitive minima—which further 

justifies the need to use a complex optimization method like PSO to explore this rough landscape. 

To further compare the obtained structures, we also investigate the partial bond angle 

distributions (PBADs) predicted by the two new potentials (Figure 5). We note that for both PSO-1 

and PSO-2, the PBADs are not included in the cost functions and such 3-body correlations are not 

fully described by neither the partial PDFs nor the D(r). As such, the PBADs enable structural 

comparison with the alternative potentials for a feature, which has not been used in any of the 

parameterizations.  

 

 

Figure 5: Partial bond angle distributions of silica glass at 300 K for (a) Si–O–Si and (b) O–Si–O. 

Data are shown for predictions by the PSO-1 (orange line) and PSO-2 (green line) potentials and 

BKS11 (red line) and SHIK5 (blue line) potentials from literature. The expected mean value is shown 

as a range between the dashed black lines from 141° to 160° for Si–O–Si37 in (a) and as a single 

dashed black line at 109.5° for O–Si–O in (b). 
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Considering the Si–O–Si distribution (Figure 5a), we observe that the PSO-2 potential predicts 

an average angle of 153.4°, which is larger than that from the other potentials, though still within the 

range of reported experimental values37. For the O–Si–O PBAD (Figure 5b), we observe that all 

potentials predict the silica atoms to be mainly situated in tetrahedral structures with an average bond 

angle to oxygens of ~109°. The PSO-2 potential produces a glass structure with a narrower O–Si–O 

distribution compared to the other potentials, indicating that the potential yields the most ordered 

angular environment around the Si atom. This is in agreement with the hypothesis that the PSO-2 

potential forces the simulated glass structure to be more ordered to compensate for the high cooling 

rate. Finally, we observe small bumps at ~90° for both PSO and SHIK potentials, which are caused 

by the presence of a small amount of edge-sharing SiO4 tetrahedra. However, for all potentials except 

PSO-2, the amount of these unrealistic defects is negligible. 

Figure 6 shows that both of the new PSO potentials describe the experimental S(Q) well, with 

the PSO-2 potential having an 𝑅𝜒
𝑆(𝑄)

 of 6.1%, the lowest among all the considered potentials. This is, 

however, not surprising as the experimental S(Q) used for comparison is the one used for obtaining 

the D(r) function that PSO-2 is optimized to reproduce. Nonetheless, it shows that PSO-2 not only 

captures the short-range order of the glass structure, but also reproduces the medium-range order 

characterized by the S(Q) function. The PSO-1 potential also predicts a reasonable S(Q), giving an 

𝑅𝜒
𝑆(𝑄)

 of 6.9%, again similar to the “soft” SHIK potential.  
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Figure 6: Neutron structure factors (S(Q)) for silica glass predicted by the PSO-1 (green line) and 

PSO-2 (orange line) potentials and BKS11 (red line) and SHIK5 (blue line) potentials from literature. 

Comparison with experimental data is also included (black line)13 . The structure factors are displaced 

vertically for clarity. 𝑅𝜒
𝑆(𝑄)

 coefficients calculated for the structure factors are shown. 

 

While the S(Q) does give some insight into the medium range structure, a more intuitive measure 

is the ring size distribution of the glass samples. These are presented in Figure 7. The ring size 

distribution from the four potentials do not differ significantly, although the PSO-2 potential exhibits 

a slightly broader distribution than the other potentials.  
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Figure 7: Ring size distribution of silica glass predicted by the PSO-1 (green line), PSO-2 (orange 

line),  BKS11, (red line) and SHIK5 (blue line) potentials, compared with experimental values (black 

line) from literature in inset13. 

 

To further evaluate the performance of the PSO potentials, we have calculated the change in 

density, silicon coordination number, Young’s modulus, and Poisson’s ratio with increasing pressure 

(Figure 7). We observe that the PSO-1 potential correctly predicts the increase in density with 

pressure as seen in experiments, although with a small underprediction at lower pressures. The PSO-

2 potential also shows an increase in density with increasing pressure, but the increase is much less 

pronounced than what is observed experimentally and for the other potentials. On the other hand, the 

PSO-2 potential correctly does not show any increase in silicon coordination with pressure, even at 8 

GPa, whereas all the other potentials show an increase in silicon coordination. In addition, we observe 

a large increase in the silicon coordination number for the PSO-1 at 8 GPa compared to the increase 

seen for the BKS and SHIK potentials. We observe a decrease in Young’s modulus for the PSO-2 

potential with increasing pressure, although the overestimation previously discussed remains. For the 

PSO-1 potential, we observe a decrease in Young’s modulus with increasing pressure until a 
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minimum is reached at 6 GPa. This is an overestimation of the location of the minimum when 

compared to the experimental data.  Lastly, we observe that all potentials overestimate Poisson’s ratio 

with no potential being able to reproduce the distinct minimum seen in experimental data. Generally, 

we thus conclude that the PSO potentials are not better at predicting the behavior of silica glass under 

pressure than the previously established potentials. This is not surprising as no information about 

pressure behavior was included in the cost functions used for their optimization. 

 

 

Figure 8: Variation  of (a) density, (b) average Si coordination number, (c) Young’s modulus, and 

(d) Poisson’s ratio with pressure as predicted by the PSO-1 (green line), PSO-2 (orange line) 
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potentials, BKS11 (red line), and SHIK5 (blue line) potentials, along with comparison to experimental 

data37–39  (dashed black line).  

 

In theory, it is possible that a force field parameterized based on a liquid structure could offer an 

excellent description of the structural features of glass, assuming this glass has been prepared with a 

cooling rate that is comparable to experimental cooling rates. However, this is impossible to achieve 

with melt-quenched MD simulations, but could potentially be achieved by accelerated sampling 

methods like metadynamics40 or force-enhanced atomic refinement23. 

In general, the comparison of the PSO-based with the alternative potentials from literature across 

different properties shows that the two new PSO potentials give a comparable description of the silica 

glass relative to the other potentials.  

 

D. Optimization process 

To further evaluate the performance of the PSO algorithm, we focus on the optimization process for 

the two potentials. Figure 9 shows the evolution in the costs obtained for all particles as a function of 

the iteration step number. For both optimizations, the majority of the optimization takes place in the 

first 70-100 iterations, where we thus observe the largest reduction in the cost of the best position 

found by the swarm. The last ~100 iterations primarily serve to refine the found minimum, with the 

best performing potential being identified after 130 and 149 iterations for PSO-1 and PSO-2, 

respectively. This shows that for the cost functions used herein, the PSO algorithm uses 70-100 

iterations to find a very competitive minimum, corresponding to the evaluation of 1470-2100 

potentials with varying parameters. We note that with the PSO parameterization, we only need to 

conduct the optimization once, whereas other types of conventional local optimization methods need 

to be repeated several times with different initial values for the parameters. 
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Figure 9: Development of the obtained cost for all particles as a function of iteration for (a) 𝑅𝜒
𝑔(𝑟)

 for 

the PSO-1 optimization and (b) 𝑅𝜒
𝐷(𝑟)

 for the PSO-2 optimization. Potentials, for which a cost could 

not be obtained, are included with a cost of 103. 

 

As shown in Figure 9, there are particles with significantly higher costs than the minimum cost 

obtained after 200 iterations. These high costs stem from the particle swarm not being fully converged 

on the best-found minimum after the 200 iterations. Given more iterations, the swarm is expected to 

fully converge at the minimum. For the optimization of the PSO-1 potential, 242 out of the 4200 

evaluated potentials could not be simulated due to the dynamics of the potential, with 184 of these 

being evaluated in the first 100 iterations. Similarly, for the PSO-2 optimization, 596 out of the 4200 

evaluated potentials could not be simulated due to the dynamics of the potential, with 545 of these 

being evaluated in the first 100 iterations. These unviable potentials can be quickly dismissed and in 

fact provide valuable information about the cost landscape. As such, the early iterations of these PSO 

optimizations have been conducted significantly faster than the latter ones due to a higher occurrence 

of unviable potentials. The speed of the optimization process could be improved by performing the 
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final refinement of the best minimum found by PSO with an alternative optimization algorithm, or 

by changing the neighbor topology of the PSO algorithm to the global best model. 

The main possible source of bias in the proposed PSO optimization scheme is the initial search 

space values. We choose these values based on preliminary studies, with the intent for the search 

space values to be large enough to contain the majority of viable parameter combinations, while 

limiting the amount of unviable parameter combinations. As the absorbing boundary handling scheme 

has only been used on the lower boundaries of the search space, particles have been able to move 

beyond the proposed upper search space boundary. Indeed, we observed this ability several times, 

with parameters of some particles reaching values more than two times higher than the upper search 

space boundary. We therefore do not believe that a large bias is introduced to the optimization process 

by providing the initial search space values.  

Although the present results are for parameterization of two specific cost functions to obtain 

Buckingham potential parameters for silica, the approach is very general and can be easily applied to 

other potential parameterization schemes. However, there are still many aspects of the PSO algorithm 

for potential parameterization to be explored. For example, many variations of the PSO algorithm 

exist in literature, which could be explored to potentially increase the performance of the algorithm. 

The use of adaptive acceleration constants and inertia weight have been explored 41,42 and could help 

to achieve a better balance between exploration of the cost landscape and exploitation of known 

minimums. There are also variants of the PSO algorithm, in which the particles move based on other 

principles43 or where it has been combined with other metaheuristic optimization methods44. The 

present application of PSO for potential parameterization can thus easily be expanded upon to achieve 

more efficient parameterization schemes. 
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IV. Conclusion 

We have presented a new methodology for applying particle swarm optimization to produce accurate 

interatomic potentials for classical MD simulations. We demonstrate our approach by attempting to 

optimize the structure of SiO2 in both the molten and glassy states using the Buckingham potential 

form. Generally, we find the particle swarm algorithm to be highly efficient at searching for and 

identifying viable potential parameters, which reproduce the structural features used in the 

parameterization. Although the results presented here are for parameterization of two specific cost 

functions to obtain Buckingham potential parameters for silica, the approach is very general and can 

be easily applied to other potential parameterization schemes. As such, our work has shown that it is 

possible using particle swarm optimization to minimize rough cost functions with an efficient and 

non-biased approach. The PSO method therefore provides a suitable algorithm for parametrizing new 

interatomic potentials.  

Supplementary material 

See the supplementary material for figures showing the atomic pair interactions and predicted VDOS 

of silica glass of the PSO potentials compared to potentials from literature. 
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The data supporting the results within this paper are available from the corresponding authors upon 

reasonable request.  
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(a) global best topology (b) local best topology
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