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Bellow is a list of papers I’ve written in the fields of mathematics and com-
puter science. The papers themselves are lengthy so I’m also including short
summaries of each. My hope is that my previous research output along with my
extensive industry experience is sufficient in proving my proficiency in machine
learning and the basics of computer science necessary to succeed within the mas-
ters program. I’m also linking my Github where you can find code for machine
learning algorithms, numerical solvers/simulators, along with consumer-facing
software I’ve developed.

1 Autonmous Trading Using Deep Q Learning

Was the first author on a paper in which we explore the application of Deep
Reinforcement Learning (DRL) to the domain of autonomous equity trading,
with a particular focus on the use of Deep Q Networks (DQNs) to develop
trading agents capable considering risk during their decision making process.
To do this we incorporate a comprehensive set market indicators into the state
space and several risk metrics into the reward function to guide trading decisions
towards not only profitability but also risk-adjusted returns. The risk metrics we
tested include the Sharpe Ratio, Sortino Ratio, and Treynor Ratio. We tested
Vanilla DQN, Fixed Target Distribution DQN and Double DQN with each risk
metrics to find the optimal trading agent. We found that most trading agents
trained earn a percentage increase of around 6%-13%. Specifically we found
that incorporating the Sharpe ratio into the reward function produces the best
return, and that the Double DQN algorithm is optimal across all risk metrics.

The Paper is Attached Bellow.

2 UCLA Semel Institute of Human Behavior

Contributed to two research papers. The first of which discusses the effect of
machine translation on the accuracy of sentiment analysis, with an emphases
on transcripts from the G8 and G20 Summits. My work for the first paper
involved building a Russian transcription and translation pipeline on UCLA’s
Hoffman super cluster. The second paper evaluates the use of Long Short Term
Memory Neural networks to classify the same transcripts from the G8 and G20
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summits. My work for the second paper involved implementing a training the
LSTM model that was evaluated. Both papers have recently been submitted to
the the Society for Computation in Linguistics’s 2024 Conference.

Both Papers are Attached Bellow.

3 Model Predictive Control Algorithms for Mod-
eling Wayfinding

For the past two centuries, research on human cognition and decision-making
has centered on rational choice theory, which assumes individuals are utility
maximizers capable of evaluating all possible options to make optimal decisions.
However, human behavior data contradicts this, as real-world decision-making
is constrained by limited time and cognitive resources. To address this gap,
the proposal introduces three axiomatic principles of energy-efficient decision-
making, supported by an optimal-control model and a Deep Q learning frame-
work. These models aim to provide more realistic and computationally efficient
ways to model decision-making across fields like market behavior, crowd dynam-
ics, and even large language models (LLMs). The proposed frameworks could
enhance LLMs by enabling cost-effective planning of multiple tokens ahead,
improving over the current auto-regressive systems. Despite broader AI ap-
plications, the theory is grounded in classical wayfinding, such as foraging, to
formalize its principles.

The Paper is Attached Bellow.

4 Novel Quantum Algorithms for Simulating Noise

First we explore methods to decompose a noise operator into a sum of cliffords
via mixed integer linear programming and using these decompositions to classi-
cally simulate noisy quantum circuits within the stabilizer formalism first pro-
posed by Aaronson and Gottesman (2004). We find that the a Clifford decom-
position is not guaranteed to have low rank decompositions and that at best the
runtime of simulating noise using Clifford decompositions would be O(2k), where
k is the number of Kraus operators applied. Second, we explore the process of
dilating our space to convert our noise operators into unitaries in a larger space.
Specifically we propose two unitary dilation based algorithms for simulating
noise; Sz.-Nagy and Stinespring’s dilation algorithms. The two algorithms yield
respective run-times of O( 1

δ∆2 sn
3η−21.17t) and O(n2

∏k
i=1 |ξi|+n3

∑k
i=1 |ξi|3).

Third we propose a theoretical framework for generalizing the T-Gadget ap-
proach developed by Bravyi and Gosset (2016). Through large scale numerical
simulations we show that the generalized framework can be used to produce
noise simulation algorithms with efficient runtime and space complexity.

The Paper is Attached Bellow.
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5 Quantum Decision Making Algorithms

In this paper, we have explored the complexity of decision making in the single-
celled organism Stentor roeselii. Through an analysis of the data provided by
Dexter, we confirmed that the protist’s behavioral responses, though simple in
nature, follow statistical trends that imply a form of primitive learning or adap-
tation. While previous attempts to model this behavior using classical machine
learning frameworks, such as decision trees and neural networks, have failed to
capture the probabilistic aspects of the organism’s actions, we proposed a novel
quantum behavioral model that aligns with these complexities. The quantum
framework we introduced successfully simulates the organism’s decision-making
process by incorporating both noise and probabilistic features observed in Sten-
tor roeselii’s behavior. By utilizing quantum information theory, particularly
quantum circuits with amplitude dampening and memory effects, our model
captures the stochastic nature of the protist’s decision-making hierarchy. This
allows for the representation of inter- and intra-sequence learning that was ab-
sent in earlier models or hidden behind a black box.

The Paper is Attached Bellow.

6 A Model for Trust Driven Advertising

Was the first author on a paper where we propose that cognitive processes un-
derlie economic relations. In the paper we develop a conceptual, mathematical,
and computational framework for modeling market exchange as a series of dy-
namically interacting cognitive processes. We’ve submitted the paper to the
10th International Conference on Computational Social Science and the 2024
Cognitive Science Society Conference.

The Paper is Attached Bellow.

7 Recasting a Labor Adjusted Aiyagari Income
Model into an MFG System

Wrote a paper examining the Aiyagari Income Model MFG system proposed
by Achdou, Han, Lasry, Lions, and Moll. My paper was focused on how total
labor supply was represented, and how one could adjust the model to account
for idiosyncratic spikes or shortages in the total labor supply. Throughout this
paper we present a brief primer of the Aiyagari model of income that’s been
modified to incorporate idiosyncratic labor supply, along with necessary back
ground/derivations of the HJB and KFP equations, before finally introducing a
derivation of the Mean Field Game representation of our labor adjusted income
model.

The Paper is Attached Bellow.
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Sentiment Analysis of Russian Political Discourse:
Does Translation Matter?

Anonymous ACL submission

1 Introduction001

Current trends in the automated analysis of online002

media texts endeavor to identify ‘misinformation’,003

or the spread of misleading information. Although004

emotional and subjective language can be exploited005

for disinformation purposes, automated analyses006

often struggle to classify texts on the level of dis-007

course pragmatics. This difficulty is compounded008

in cross-cultural communication, where speaker009

intent can be misinterpreted due to the transforma-010

tion of meaning that occurs in translation (Lotman,011

1990). Few authors question how pragmatic sys-012

tems may be encoded across languages (Comstock,013

2015), and whether this will affect the interpre-014

tation of their model outputs. By comparing the015

emotional and subjective language employed by016

journalists while questioning the Russian president,017

this paper problematizes the assumption that a sen-018

timent analysis performed on a translation and its019

source text will be equivalent.020

2 Related work021

The successful classification of discourse-level022

phenomena combines multiple linguistic features023

or domains (Becker et al., 2020). Co-occurring024

markers of polarity and subjectivity may isolate025

contexts that promote misinformation (Carrasco-026

Farré, 2022); however, analyses performed on Rus-027

sian texts in translation typically fail to ascertain028

whether the pragmatics of the translated text more029

closely reflect that of the source or target language030

(Araujo et al., 2016). As a result, even with the031

numerous authors that have applied sentiment anal-032

ysis techniques to misinformation in Russian dis-033

course (Pocyte, 2019; Yaqub et al., 2020), the effect034

of translation on analysis outputs remains an im-035

portant topic of study.036

Summit Term Russian English
G8 2000-2003 757 874

2004-2007 2129 2611
2008-2011 1412 1709
2012-2015 611 737

G20 2000-2003 – –
2004-2007 – –
2008-2011 1598 1887
2012-2015 2241 2474

Total 12338 14667

Table 1: The number of words collected in each summit
are presented for the Russian transcripts and English
translations. The translations are nearly 19% longer.

3 Methods 037

We investigated (i) if the total lemma count and fre- 038

quency of emotional and subjective words differ by 039

the nature of the political event (the more exclusive 040

G8 summit versus the G20 summit); (ii) if the total 041

lemma count and frequency differ by presidential 042

term (2000-2019); and (iii) how the observed fre- 043

quencies of lemmas produced during press confer- 044

ences correspond to the expected lemma frequen- 045

cies calculated from Russian-language or English- 046

language online media sources (the National Rus- 047

sian Corpus and Google Ngrams). 048

The corpus comprises all publicly available 049

transcripts of press conferences held by the Rus- 050

sian president at G8 and G20 summits from 051

2000-2015 (Comstock, 2023). The written tran- 052

scripts were accessed at the Kremlin online press 053

archives (http://kremlin.ru, http://en. 054

kremlin.ru/). Questions were originally posed 055

in Russian. A composite list of positive, negative, 056

and subjective words was compiled from the Har- 057

vard IV-4, Loughran, McDonald, and Lexicoder 058

sentiment dictionaries. Translation accuracy and 059

the applicability of the composite list were con- 060

firmed by a professional Russian translator. 061
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4 Results062

We observe that the language context in which the063

sentiment analysis is performed does not remain064

consistent, even across similar political venues and065

short time differences.066

Figure 1: Sentiment analysis by summit. (A) The total
lemma count differed by sentiment type and summit.
(B) The total lemma count differed by presidential term.

Figure 2: Sentiment analysis by sentiment type. The dif-
ference between observed and expected frequencies by
(A) positive, (B) subjective, and (C) negative sentiment.

Figure 3: Sentiment analysis by language. The observed
frequency of lemmas in each language relative the ex-
pected frequency of the same lemmas.

5 Discussion067

The translation and original text do not produce068

an equivalent effect. The translation largely re-069

produces the expected distribution of emotional070

content, with a slight increase in positive items,071

whereas the original Russian text employs signif- 072

icantly less positive emotion. Subjective words 073

trend with positive items in terms of the total count, 074

which may reflect general pragmatic norms to up- 075

grade positive assessments and minimize negative 076

ones. Overall, the translator used a smaller range 077

of words than the Russian text, accommodating 078

general language norms, whereas the Russian text 079

remains more specific and illustrates a wider range 080

of lemmas. This is generally considered to be the 081

advantage of utilizing a human translator: the text 082

reads more naturally because it conforms to target 083

language norms. However, we see that this practice 084

also changes the emotional tone of the text. 085

6 Conclusion and limitations 086

The sentiment analyses illustrate that classification 087

outputs, like reader perceptions of a translated text, 088

may differ notably. We anticipate greater signifi- 089

cance will appear with a more robust exclusion of 090

outliers. Analysis of the effect of extreme outliers 091

by language type is a future direction of research. 092
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An evaluation of sentiment models relative human coding in
pragmatically-defined speech

Anonymous ACL submission

1 Introduction001

Computational methods aim to closely replicate002

human sentiment encodings, yet the simple NLP003

models traditionally employed by linguists show004

variable success in task performance (Kansara and005

Sawant, 2020). This extended abstract illustrates006

the ways in which more sophisticated yet accessi-007

ble sentence- or discourse-level techniques, such008

as Long-Short Term Memory (LSTM) modeling,009

can better match human sentiment analyses as com-010

pared to word-level techniques, such as Bag-of-011

Words models, by mimicking aspects of language012

pragmatics (Comstock, 2015; Thomas, 2014). Our013

aim is to encourage linguists to consider the impli-014

cations of model selection for their analysis task.015

2 Methods016

We utilize a corpus of questions posed to Russian017

Presidents at the G8 and G20 press conferences018

from 2000 to 2019. Transcripts are sourced from019

the Kremlin press archive (http://kremlin.020

ru, http://en.kremlin.ru/). All texts are021

in Russian. The corpus comprised 256 questions022

(12338 words).023

2.1 Human coding024

Questions occur within a larger text referred to as025

a "questioning turn–QT" (Clayman et al., 2006).026

Human coding consisted of labeling (i) individual027

sentences–ST within a QT as “positive,” “negative,”028

and “neutral,” and then aggregating sentence-level029

codes to (ii) classify the entire QT according to one030

of the three categories. A second analysis consid-031

ered additional contextual information to subdivide032

each category: (i) positive politically-related ques-033

tions vs. non-political human interest questions,034

and (ii) questions hostile towards the policy de-035

scribed vs. toward the lack of solidarity exhibited036

among summit members. Details of the coding037

scheme have been published (Comstock, 2023).038

Figure 1: Human coding. (A) Simple sentiment coding.
(B) Contextual sentiment coding. Axes show the per-
centage of correct labels for STs by presidential term.

Human coding illustrated a trend towards less 039

positive sentiment over time (see Figure 1). 040

Contextually-determined subcategories were well- 041

represented, particularly in the positive category. 042

2.2 Matching human coding: Bag-of-Words 043

The Bag-of-Words (BoW) analysis used a modi- 044

fied Lexicoder Sentiment Dictionary to determine 045

key sentiment word cues (Young and Soroka, 2012) 046

from the English transcripts; afterward, words that 047

were summit-specific (i.e., "resolution", etc.) or car- 048

ried a different sentiment in Russian were removed 049

by a professional Russian translator. Positive and 050

negative words were divided by the total number 051

of words in a given presidential term to determine 052

sentiment frequency by term. 053

2.3 Matching human coding: Neural Network 054

The model and training data were adapted from 055

an open-source Kaggle competition for sentiment 056
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analysis of Russian news. The best-performing057

convolutional neural network bidirectional long-058

short-term memory (CNN-BiLSTM) model was059

used (https://www.kaggle.com/code/thehemen/cnn060

-bilstm-russian-news-classifier). Training data com-061

prised 8263 excerpts of varying length from pre-062

classified Russian news articles. The model pre-063

dicted sentiments of STs and QTs in our data, as-064

signing a “positive,” “negative,” or “neutral” label.065

3 Results066

When compared to the human coding, both com-067

putational models were ineffective in matching the068

actual percentages of human-coded sentiment. The069

BoW analysis not only showed much lower per-070

centages of captured sentiment but also did not071

accurately reflect the trends shown in the human072

coding (see Figure 2). While the LSTM analysis073

of STs captures "more sentiment," this may be mis-074

leading: it is ineffective in capturing the true scope075

of sentiment and the trends over time as compared076

to the QT analysis.077

Figure 2: Sentiment analyses. (A) BoW analysis. (B)
LSTM analysis of STs. (C) LSTM analysis of QTs.
Axes show the percentage of correct labels for words,
STs, or QTs by presidential term.

4 Discussion078

Although more sophisticated models such as LSTM079

increase complexity and involve a greater learning080

curve to utilize, the results are markedly better at081

reflecting trends across time. As neither model082

is accurate on an item-by-item basis, LSTM mod- 083

els are strongly preferable to capture sentiment 084

analysis trends. Consideration of extra contextual 085

data appears to have boosted the QT model perfor- 086

mance: when individual items are reviewed with 087

their assigned labels, we see that the BoW analysis 088

captures a large portion of "positive" and "hostile- 089

policy" human-coded data, but not the "human in- 090

terest" or "hostile-solidarity" data. The LSTM per- 091

forms markedly better in accounting for these more 092

pragmatically defined subcategories. 093

5 Limitations and further direction 094

In our extended abstract, we will provide text ex- 095

cerpts to illustrate how the various models focus on 096

different pragmatic elements of the sentence. We 097

will also have space to provide statistical analyses. 098

LSTM performance is highly dependent on train- 099

ing data; using a dataset more closely related to 100

political questioning than the given Russian me- 101

dia dataset might improve or change our findings. 102

Additionally, there is a large gap in complexity be- 103

tween BoW and neural network analyses. Consid- 104

ering a wider variety of models will provide more 105

detailed insight into which computational methods 106

are effective for different use cases. 107
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Abstract

In this paper, we explore the application of Deep Reinforcement Learning (DRL) to the domain of au-
tonomous equity trading, with a particular focus on the use of Deep Q Networks (DQNs) to develop trading
agents capable of navigating the complex and dynamic landscape of the financial markets. We introduce three
variants of the DQN model; Vanilla DQN (V-DQN), Target DQN (T-DQN), and Double DQN (D-DQN). Our
models incorporate a comprehensive set market indicators into the state space and several risk metrics into
the reward function to guide the trading decisions towards not only profitability but also risk-adjusted returns.
The risk metrics include the Sharpe Ratio, Sortino Ratio, and Treynor Ratio. We test each Q learning scheme
outlined above with each risk metrics to determine the best trading agent. We find that most trading agents
earn a percentage increase of around 6%-13%. After training, we find that incorporating the Sharpe ratio into
the reward function produces the best return, and that the Double DQN algorithm is optimal across all risk
metrics.

Keywords: Reinforcement Learning, Q Learning, Finance, Agent Based Modeling, Equity Trading

1 Introduction
In recent years, advancements in the fields of Deep and Reinforcement Learning have transformed algorith-
mic trading. With the surge in computational power and increasing amounts of financial data, traders and
researchers have been exploring novel methods to create autonomous trading agents that can operate success-
fully in financial markets. One such strategy is Deep Q Learning, which has dominated various domains such
as game playing, robotics, and now, financial trading.

With this in mind, we form the questions, how do we create such an agent, and guide it to make valid
decisions? How do we ensure the stability of the agent? How do we improve upon previous attempts? We
observed that in existing literature, many researchers had attempted to create such a Deep Q Learning system
using ordinary Profit-Loss based Reward systems and state spaces that contain only the asset’s price. In order to
improve performance, we decided to incorporate a wider range of performance indicators and risk metrics into
our agent’s decision making process. We hope to create an agent that can mimic a human investor with strong
insight into market trends and behaviour. The primary concerns surrounding autonomous trading are rooted in
the belief that technical analysis does not account for underlying factors that drive growth. For example if an
autonomous agent sees unexpected behaviour in the markets, or is unable to access long horizons of meaningful
data, it may be unable to act as an informed human would by analyzing the key indicators and risk metrics.
However, trading algorithms introduce their own advantages, such as a lack of emotion or bias, and the ability
to place buy and sell orders instantly without need for time-intensive deliberation. Moreover, algorithms have
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the ability to identify trends and patters that may be difficult for a human trader to observe. Overall, we seek to
combine all the advantages of both human and autonomous trading, and build an agent that can be continuously
improved. In our implementation, we aim to contribute to the growing field of Reinforcement Learning (RL),
and expand its applications into financial markets.

In this paper, we focus on two problems native to the use of RL in finance. The first issue is the noise
contained in the underlying data, which can make training a Deep RL network difficult. To mitigate this
problem we implement Fixed Target Distribution Deep Q Learning and Double Deep Q Learning and compare
their efficacy to a traditional Deep Q Learning framework. Next we acknowledge that many RL trading agents
only use their profit or loss to inform investment decision. However, in reality traders are often concerned with
hedging risk. In an effort to replicate this type of trading behavior we use risk metrics as a way of assessing an
agent’s investment decisions. To do this, we implement different combinations of metrics such as the Sharpe
Ratio, Sortino Ratio, and Treynor Ratio. We then present results of the agent’s performance using different
training schemes. We see that the agent always delivers promising rates of return, between 6% and 13%.
Specifics on the implementation of our trading environment, algorithms used, and experimental results will be
detailed in further sections.

1.1 Paper Organization
We begin with a brief introduction of necessary mathematical prerequisites of Q Learning. Next, we discuss the
necessary financial prerequisites, before proposing several deep Q learning frameworks to solve the problem
of optimal equity trading. We end with an evaluation of our results and consider possible future work on this
problem.

2 Mathematical Background
In this section we aim to provide the relevant mathematical and programmatic background for implementing a
Deep Q Learning algorithm. We discuss what Q learning is and how the principles from classical Q learning
can be used to construct deep Q learning algorithms in Python. We will be borrowing heavily from Brunton
and Kutz’s book titled “Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and
Control”.

2.1 General Reinforcement Learning
Before we begin our discussion of Q learning, we will begin with an exposition of the two primary categories of
RL: model-based and model-free. Model-based RL systems create a model of the environment, which includes
the dynamics of how actions lead to subsequent states and rewards. Essentially, it predicts the future states and
rewards for actions taken from a given state. Take for example the gambler problem, which provides explicit
probability measure P(s′,s,a) that provides explicit probabilities as to whether the actor will win or lose a
gamble. In other words, the gambler queries the environment for its transition dynamics. The second approach
is model-free, which is where a system learns a policy or value function directly from interactions with the
environment without constructing an explicit model of the environment’s dynamics. The system learns what to
do by trial and error, adjusting its actions based on the rewards received.

The second distinction that we’d like to note is two subcategories of model-free RL; off and on-policy
learning. On-Policy learning algorithms learn the value of the policy that is currently being used to make
decisions. Put simply, the policy used to generate behavior (exploration) is the same policy that is being
evaluated and improved. Essentially, it learns on the job, using the data generated by its current strategy. By
contrast off-policy learning algorithms can learn about one policy (the target policy) while using a different
policy (the behavior policy) to generate behavior. This means it can learn from data that was generated from a
previous policy or even from data generated by other agents. This separation allows for greater flexibility and
efficiency in some contexts.
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2.2 Q Learning
With the general background of RL out of the way, we note that Q learning is a model-free and off-policy
training scheme. That means that Q learning does not rely on an environment that can produce exact transition
probabilities and must instead use trial and error of optimal or sub-optimal actions in order to learn the optimal
policy. In order to formalize this type of training scheme we first define the quality function Q(s,a), which tells
you the joint value/quality of taking an action a given a current state s.

To formally define Q(s,a) we first introduce some notation. We let R(s′,s,a) be the reward of transitioning
from state s to s′ through action a, γ be the discount factor of future reward, and V (s′) be the expected value
over all possible future rewards given a current state s′. With that we define Q(s,a) as

(1)
Q(s,a) = E(R(s′,s,a) + γV (s′))

= ∑
s′

P(s′|s,a)(R(s′,s,a) + γV (s′))

In other words, Q is the expected sum of the instantaneous reward of the state-action pair (s,a) along with the
discounted future rewards of being at a new state s′ brought on by (s,a). Using the quality function Q(s,a) we
can define an optimal policy π and value function V (s), that considers which action a is optimal and what the
expected reward from taking that action is.

(2)V (s) = max
a

Q(s,a)

(3)π(s) = argmax
a

Q(s,a)

We can even rewrite the equations above in terms of Bellman’s equation, which tells us that the value of
being in state s is the expected current and future return of applying the optimal action a.

(4)V (s) = max
π

E(R(s′,s,a) + γV (s′))

We’ve defined what a q value is and how to construct the quality function Q(s,a), but now we define a
recursive equation to update Q(s,a) as the agent learns through trial and error.

(5)Qnew(sk,ak) = Qold(sk,ak) + α


rk + γmax

a
Q(sk+1,a)− Qold(sk,ak)

︸ ︷︷ ︸
TD Error




Let’s dissect this update equation. As we engage in trial and error learning, we update our Q(s,a) by slowly
nudging our q values up or down by a factor of the difference between the actual current and future reward
rk + γmax

a
Q(sk+1,a) and our predicted reward Qold(sk,ak)). This difference is sometimes referred to as the

“Temporal Difference (TD) error”. We also note that α in this case is the learning rate.
We draw the readers attention to two interesting features of the update equation. First to the term γmax

a
Q(sk+1,a).

The reason why we maximize Q over a is to guarantee that the quality Q(sk,ak) is a function of the optimal
actions that can be taken given a new state s′ brought on by (sk,ak). rk on the hand, which is the reward derived
from the pair (sk−1,ak−1) is not required to be the optimal reward, and will most likely be sub-optimal during
the training process. This is precisely the reason why Q Learning is an off-policy learning scheme.

Second we note that when calculating the TD error, the agent calculates the future reward by looking one
step into the future. This idea of looking forward in time by one time step to calculate error is why the error is
called the TD error. Naturally, the degree to which the agent looks into the future can be modified.

3



2.3 Deep Q Learning Variations
Now we discuss the process of recasting Q Learning into training schemes that incorporate deep learning meth-
ods like neural networks. This is especially useful in settings where the state space is too large to reasonably
store all q values in a Q table. Here, a deep learning approach seeks to parameterize Q(s,a) as dependant on
some weights θ such that

(6)Q(s,a) ≈ Q(s,a,θ)

In order to optimize for the parameters θ within a Q Learning framework we use a loss function that is
eerily similar to the TD error defined in equation (5). This framework is known as a Vanilla Deep Q Network
(V-DQN).

(7)L = E[(rk + γmax
a

Q(sk+1,a,θ)− Q(sk,ak,θ))2]

With the loss function properly defined, we can move on to the neural network architecture, and how it
allows us to approximate the Q function. In practice, we find that the architecture of the network varies based
on the use case. For example a team of DeepMind engineers in 2013 coupled the loss function described above
with several convolutions layers and fully connected layers. The inputs were several consecutive frames for
the game, which represented the agent’s state. And the output was one of several possible action that the agent
could take. Regardless of the architecture used the value contained in each output node approximates the value
Q(s,a) for the associated (s,a) which corresponds to the network’s (Input,output) pair.

The deep Q networks described above can be difficult to train due large variance in the estimated Q function.
To mitigate this problem we can introduce two separate schemes to deal with this problem.

2.3.1 Stabilization Schemes

First we introduce the fixed target distribution Q learning framework, known as T-DQN. This framework in-
volves introducing a second neural network to approximate the temporal difference target, instead of using the
same main network to predict the quality of the next state. Under this framework TD Error and TD Target are
defined as follows

(8)

TD Target︷ ︸︸ ︷
rk + γmax

a
Q(sk+1,a;θ−)−Qold(sk,ak;θ)

︸ ︷︷ ︸
TD Error

where Q(s′,a′;θ−) is the Q value predicted by the target network for the next state-action pair, and Q(s,a;θ)
is the Q value predicted by the main Q network for the current state-action pair.

T DT-DQN
target = r+ γmax

a′
Q(s′,a′;θ−), (9)

However, unlike the main network, instead of updating the target network at every training step, which can
lead to high variance in the target Q values and general instability in training, the target network’s weights
are only updated after a fixed number of steps or episodes. This creates a stable target distribution for the Q
values against which the policy network is updated. However, given the training scheme of the target network
it is functionally just a delayed copy of the main network. Because the target and actual Q values are being
estimated by similar networks, we run the risk of overestimating the target when our data has high variance. To
mitigate the problem of overestimation we can propose another framework called the Double Deep Q Network
(D-DQN).

Like fixed target distribution Q learning, a double deep Q learning framework relies on a target network
and a main network. However in this case, the main Q network is responsible for choosing the best action, but
the target network is used to evaluate the quality of that action. Its a fine difference that can be formulated as
follows

T DDDQN
target = r+ γQ(s′,argmax

a′
Q(s′,a′;θ);θ−), (10)
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3 Financial Background
In this section we transition to some necessary financial background for creating our trading agent. Specifically
we introduce several widely used market features and risk metrics. For the sake of this section and the rest of
the paper, assume that

(11)St = Price at time t

3.1 Market Features
We introduce 4 commonly used market features: Moving Average Convergence Divergence (MACD) Aguirre
et al. (2020), Relative Strength Index (RSI) Adrian (2011), Commodity Channel Index (CCI) Maitah et al.
(2016), Average Directional Index (ADX) Gurrib (2018).

3.1.1 MACD

In order to define MACD, we must first define the Exponential Moving Average (EMA)

(12)EMAt =

(
St ×

2
N + 1

)
+ EMAt−1 ×

(
1− 2

N + 1

)

where N is the number of periods that the EMA is calculated over. For example N = 12 means that EMA is
calculated over 12 days.

The MACD is a trend-following momentum indicator that shows the relationship between two moving
averages of a stock’s price, whereas the signal line is the EMA of that same difference. The MACD can help
identify the overall trend. When the MACD Line is above the Signal Line, it’s considered bullish. When the
MACD Line is below the Signal Line, it’s considered bearish.

(13)MACD Line = EMA12(St)− EMA26(St)

(14)Signal Line = EMA9(MACD Line)

3.1.2 Relative Strength Index (RSI)

The RSI is a momentum oscillator that can be defined as follows. The RSI is a momentum oscillator that
measures the speed and change of price movements. RSI oscillates between zero and 100. Traditionally, RSI is
considered overbought when above 70 and oversold when below 30. Before defining RSI, we must first define
a few terms. Gt represent the gain at time t, where Gt = max(St−St−1,0). Lt represent the loss at time t, where
Lt = max(St−1−St ,0).

The average gain and average loss over a specified period N (traditionally 14) are calculated as follows:

(15)Average Gain =
1
N

N

∑
i=1

Gt−i

(16)Average Loss =
1
N

N

∑
i=1

Lt−i

The relative strength (RS) is the ratio of average gain to average loss:

(17)RS =
Average Gain
Average Loss

The Relative Strength Index (RSI) is then calculated using the RS value:

(18)RSI = 100−
(

100
1 + RS

)
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3.1.3 Commodity Channel Index (CCI)

The CCI compares a securitie’s current price change with its average price change over a given period. It’s used
to identify cyclical trends in commodities but can be applied to other types of assets. Though it can vary by
market and the time frame you’re looking at, CCI readings above +100 typically indicate overbought conditions,
suggesting a price reversal might be near. Readings below -100 indicate oversold conditions, possibly heralding
a bullish reversal. In order to formalize CCI we first define Typical Price (TP), and Simple Moving Average of
TP (SMATP).

(19)TP =
St,high + St,low + St

3

(20)SMATP =
∑TPt

N

(21)Mean Deviation =
1
N

N

∑
t=0
|T P− SMAT P|

(22)CCI =
TP− SMATP

0.015×Mean Deviation

3.1.4 Average Directional Index (ADX)

The Average Directional Index (ADX) is a technical analysis indicator used to quantify the strength of a trend.
The ADX itself doesn’t indicate trend direction, but it measures the strength of the current trend, whether up or
down. Values above 25 usually indicate a strong trend, while values below 20 indicate a weak trend or trading
range. Values in between suggest a developing trend. However, in order to define ADX, we must once again
define several new terms.

Ht represents the high price at time t, Lt represents the low price at time t, Ct represents the close price at
time t. DM+ and DM− denote the positive and negative directional movements, respectively. T R denotes the
true range. +DI and−DI represent the positive and negative directional indicators, respectively. We can define
each of these terms bellow.

(23)DM+ = max(Ht − Ht−1,0)−min(Lt − Lt−1,0)

(24)DM− = max(Lt−1 − Lt ,0)−min(Ht−1 − Ht ,0)

(25)T R = max(Ht − Lt , |Ht −Ct−1|, |Lt −Ct−1|)

(26)+DI = 100× DM+

T R

(27)−DI = 100× DM−

T R

(28)ADX = 100× EMA of |(+DI)− (−DI)|
T R

3.2 Risk Metrics
We now introduce 4 risk metrics, that allow a market agent to evaluate the risk of an investment: Sharpe Ratio,
Sortino Ratio, Treynor Ratio, Beta.
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3.2.1 Beta (β)

Beta (β) measures a security’s sensitivity to market movements. It represents the tendency of a security’s
returns to respond to swings in the market and is a key component in the Capital Asset Pricing Model (CAPM).

(29)β =
Cov(Rs,Rm)

Var(Rm)

3.2.2 Sharpe Ratio

The Sharpe Ratio evaluates the performance of an investment compared to a risk-free asset, after adjusting for
its risk. It is used to understand how much excess return is being received for the extra volatility that one bears
for holding a riskier asset.

(30)Sharpe Ratio =
Rp − R f

σp

3.2.3 Sortino Ratio

The Sortino Ratio improves upon the Sharpe Ratio by focusing only on the downside deviation instead of
the total standard deviation. This makes it a better measure of the risk-adjusted return when the investor is
concerned about downside risk.

(31)Sortino Ratio =
Rp − R f

σd

3.2.4 Treynor Ratio

The Treynor Ratio is similar to the Sharpe Ratio but uses beta (β) instead of standard deviation to measure
volatility. It assesses the returns earned in excess of the risk-free rate per unit of market risk and is particularly
useful for diversified portfolios.

(32)Treynor Ratio =
Rp − R f

βp

4 Model Development
In this section we develop our model by first defining the environment,state,action, and reward space. Then we
choose a specific deep Q network architecture, and define the control flow of our model.

4.1 Environment Setup
The stock market is a multi-agent complex system where various agents interact with each other through the
purchase or sale of various financial assets. For the sake of our model we restrict our RL agent to trading stock
in publicly traded companies. The limit order book (LOB) plays a crucial role in how stocks are priced.

The LOB is a real-time database that lists all open buy orders (bids) and sell orders (asks) for a stock at
various price levels. Bids are listed in descending order with the highest price at the top, while asks are listed
in ascending order with the lowest price at the top. The LOB facilitates price discovery as the matching of
buy and sell orders based on price and time priority determines the current price of the stock. This processes
of matching prices based on the difference between the bid and ask price (spread), can be directly observed
through the dynamic pricing of the asset. In other words, despite the motivation’s of the agents remaining
hidden, the state of the environment can be readily observed at the current price St . The agent can attempt to
recognize patterns in the price St , and construct market features similar to those defined in section 3.1.

Above we describe the observable features of the environment, however, for our model we also assume that
the RL agent has a set of personal rules that they must follow. The first rule is that the agent can only place a
trade of one share per transaction. The second rule we impose, for the sake of simplicity, is that our agent can
only place one trade per day. Third we restrict the agent to buying whole shares, and exclude any option of
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purchasing or selling fractional shares. Fourth, we only allow the RL agent to purchase a single stock. While
there are models that allow RL agents to construct portfolios by analyzing several stocks we restrict our RL
agent to a single stock for simplicity. Fifth, we allow the agent to borrow money infinitely, such that it can also
place a buy order at any point. However, the agent can only place a sell order if it has shares in its inventory.
We consider this to be analogous to a trader depositing more money in their trading account. Although we note
the presence of transaction fees. However, due to the relatively small volume of trades made by the RL agent,
we consider these fees to be negligible, and as a result omit them.

4.1.1 State Space

We initially define our state space to model the task of trading our chosen stock. As such our state s at time t
is:

(33)ŝt = pt

where pt is the current price of a single share of stock. However, as stated above, a market participant
will often times calculate additional performance indicators. So we allow the agent to incorporate the market
indicators listed in section 3.1 into its state. This is analogous to a trader who observes and allows those
indicators to influence their trading decisions. By including market indicators into agent’s state, we are formally
allowing the deep Q network to use those metrics when calculating Q(s,a) ∀s ∈ S, ∀a ∈ A. With the inclusion
of market indicators are state resembles the following.

(34)s̃t = [pt , MACD, RSI, CCI, ADX ]

Additionally, we make two key observations about the deficiencies of the state as defined in equation 34.
First the trader is more concerned about the difference in price ∆t (As defined in 4.1.3) then the magnitude of
the price itself, since the ∆ is more closely related to the agent’s profit. Second the trader not only has a memory
but ought to use its memory of previous market movements when making a trading decision. Using these two
observation’s we define an improved state that gives the RL agent access to a tuple of the last N state delta’s.

(35)st = [∆t−N+1,∆t−N+2, ...,∆N ]

∈ R|s̃t |×N

where ∆ is defined as follows

(36)∆t = pt − p′t

and pt ′ and pt come from states st ′ and st respectively. Specifically, t ′ is the time of purchase of the
cheapest share in the agent’s inventory. The intuition behind this construction decision is that an agent will
always prioritize locking in profits through selling the stock in its inventory that will generate the largest ∆.

4.1.2 Action Space

The action space of the trading agent is whether to buy, hold, or sell the stock in each time step at the given
state. As stated in the environment setup, our agent can only place one trade per day, and the transaction can
only be of one share. As such, we define our action space to be:

(37)A = {−1,0,1}

where −1 and 1 represent sales and purchases respectively, and 0 means holding.
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4.1.3 Reward Function

The reward we set depends on the action our agent decides. If the agent places a sell order, we reward it
according to the returns it realises, if the agent places a buy order, we reward it according to the risk of buying
that share (i.e a small risk will generate a larger reward), and if the agent chooses to hold for that time step, we
give it zero reward. Specifically, the reward R given the states at time t and t ′ with action at is defined as

(38)R(st ,at ,st ′) =





RiskMetric(st) if at > 0,
∆t if at < 0,
0 if at = 0.

where our Risk Metric is a function to be chosen from those defined in Section 3.2, and ∆t is defined as in
equation 36. We expect that incorporating risk into our reward function will guide the trading agent to make
risk sensitive trades similar to a human trader.

4.2 Deep Q Network Setup
4.2.1 Architecture

We implement a Deep Q Network System to compute optimal Q functions and choose appropriate actions.
Here we choose three frameworks outline in section 2.1 to implement and test; V-DQN, T-DQN, and D-DQN.

Regardless of our choice of framework, we define all neural networks to have identical architecture. We
choose an Artificial Neural Network with six fully connected layers including: our input layer of size |s̃t |N, a
hidden layers of size 128, two hidden layers of size 256, a hidden layer of size 128, and our output layer of size
|At |. Additionally, we define the consistent learning rate to be α = 0.001. For clarity, we graphically illustrate
the architectures of each DQN we’ve chosen to implement bellow.

Figure 1: V-DQN Framework

Figure 2: T-DQN Framework
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Figure 3: D-DQN Framework

4.2.2 Policy

In all choices above, we follow the ε-greedy policy to catalyze off-policy actions by introducing randomness.
Formally ε-greedy is implemented by replacing the max

a
Q(sk+1,a) term in equation 5 with Q(sk+1, ãk+1) where

(39)ãk+1 =

{
random action from A(st), with probability ε
argmaxa Q(st ,a), with probability 1− ε

As training continues we slowly take ε→ 0 using a simulated annealing strategy. The reason why the ε-
greedy strategy can be beneficial, is because it allows the agent to explore the space of possible actions freely at
the beginning of the training process while also emphasizing exploitation of the agents accumulated knowledge
toward the end of training. Please note that for the purpose of feeding the state into the deep Q network we
must first normalize by applying a soft max function to each column of the matrix st , then we flatten the matrix.

4.2.3 Loss Function

We’ve defined the V-DQN loss function in equation 7 but in practice the loss is implemented using various ap-
proximations. First the expectation in the Q Learning loss function is approximated using experience replay by
sampling a mini-batch of experiences from the replay buffer. Given a replay buffer D that contains experiences
(s,a,r,s′), a mini-batch of N experiences B = {(si,ai,ri,s′i)}N

i=1 is sampled uniformly at random from D. Using
this strategy we can approximate the loss function in equation 7 (V-DQN Loss) as follows. The same strategy
can be applied to the loss functions for T-DQN and D-DQN.

L(θ) =
1
N

N

∑
i=1

[(
ri + γmax

a′
Q(s′i,a

′;θ)−Q(si,ai;θ)
)2
]

(40)

The next adjustment practitioners use is the integration of the the Huber loss. This is designed to make
our loss function quadratic for small values of the error and linear for large values of the error. The parameter
δ effectively determines the sensitivity of the loss function to outliers. Previously we defined TD Error in
equation 5, which for the sake of integrating the Huber loss we’ll equate to δ. This final improvement yields
the following loss function.

L =
1
N

N

∑
i=1

L(δ) (41)

where

δ =

(
r+ γmax

a′
Q(s′,a′)

)
−Q(s,a) (42)

L(δ) =

{
1
2 δ2 for |δ|≤ 1,
|δ|− 1

2 otherwise.
(43)
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4.2.4 Optimizer

Lastly, we use the Adam optimizer in all frameworks. This is an adaptive optimization algorithm used in
training our neural networks. It incorporates momentum to accelerate convergence in relevant directions and
introduces bias correction to improve parameter update accuracy. By computing adaptive moments of gradients,
Adam scales updates effectively and ensures numerical stability with a small constant in the denominator. These
combined features make Adam a robust and efficient choice for optimizing our neural networks.

4.2.5 Hyper parameters

We use the following hyper parameters which we keep consistent across all implementations and frameworks:
our discount rate γ = 0.95, the parameters for our epsilon-greedy policy ε0 = 1, εdecay = 0.995, εmin = 0.01,
the window size N = 10, and the number of training episodes per framework E = 10.

5 Experimental Design & Results
For the purpose of this paper we use daily Google stock data, including low,high,close,and adjusted close
prices. Specifically we use Jan 1, 2018 - Jan 2019 data to train the model and Jan 1, 2019 - Jan 2020 data to
validate the model we also allow the agent to retrieve the market indicators listed in section 3.1. to incorporate
into its state space defined in section 4.1.1. All computations regarding the market indicators are defined in
section 3.1.

We then test the following variations to find the best performing trading agent. Bellow are our results
expressed in terms of percentage growth over the time. However, its important that we explain how we obtain
the percent growth value given that we don’t incorporate the idea of starting balance into our model. So in order
to calculate percent growth we assume that the initial balance B0 is the minimum balance across the episode.
Intuitively if we assume B0 = |min tBt | we functionally enforce that the agent never goes bankrupt. Using this
”implied initial balance” we calculate the percent change using BT−B0

B0
.

Metric V-DQN T-DQN D-DQN
Sharpe 8.14% 13.05% 11.21%
Sortino 0.62% -0.087% 2.61%
Treynor 6.68% 6.15% 10.26

Table 1: Performance Metrics of Different DQN Variants

We note that the percentage growth in Google’s stock from 2019-2020, was 27.75%, so each trading agent
is still under performing the market. From table 1, we observe that the Sharpe ratio is better suited to guide
the agent towards favorable trading decisions. We speculate that this is the case because the Sharpe ratio
considers both systematic and unsystematic risk along with downside and upside risk through its use of the
standard deviation of portfolio returns in the denominator. This makes it a comprehensive measure of risk-
adjusted return, suitable for evaluating strategies that might be exposed to a wide range of market risks. On
the other hand the Treynor ratio uses beta in the denominator and focuses on the systematic risk of the stock
itself relative to the overall market. Sortino’s ratio is also more limited in scope then the Sharpe ratio since
it focuses on downside risk. We also invite the readers attention to the plots bellow, where one can observe
an interesting feature in the D-DQN plots. We observe that the returns for the D-DQN algorithms outperform
the other frameworks and that the buy and sell orders are more sparse then V-DQN. We hypothesize that this
happens because Double DQN is able to effectively stabilize the TD target which Shields the agent’s purchase
behavior from idiosyncratic price shocks that may cause sporadic traeding behavior.
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5.1 V - DQN Plots
5.1.1 Sharpe

5.1.2 Sortino Plots

5.1.3 Treynor Plots
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5.2 T - DQN Plots
5.2.1 Sharpe

5.2.2 Sortino

5.2.3 Treynor
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5.3 V - DQN
5.3.1 Sharpe

5.3.2 Sortino

5.3.3 Treynor
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6 Future Improvements
While our agent yields positive returns, we identify numerous areas of possible further exploration to enable
it to outperform that market. The first is the lack of training data. By presenting our agent with daily closing
prices we limit the amount of actions it can take to one per day. This means that feedback is only as frequent as
the agent’s trade. Possible improvements to this could be training on a longer price history, or to provide more
frequent pricing information. Next, we recognize that an upgraded agent could have the ability to place a trade
more than one unit of stock per action. Specifically, we could allow the agent to trade up to k units of stock per
day, where k would be another hyper-parameter to adjust. To accomplish this, the Deep Learning framework
would need to be deeper in the number of layers and nodes, accounting for the higher dimensional action
space. Further, we acknowledge that different neural network frameworks may present various advantages.
For example, implementing a Long-Short Term Memory (LSTM) Recurrent Neural Network (RNN) could
incorporate the concept of price memory without needing to manually maintain a window of states. Along the
same lines, a Concurrent Neural Network (CNN) could be incorporated to understand our state space matrix
and produce more informed evaluations of our action-state value functions. Additionally, incorporating more
episodes in our training schemes could be greatly influential in yielding stronger results, but this would require
more computing power and runtime. Lastly, limitations on when the agent can buy and sell units based on a
notion of current balance vs. current holdings would make this project more seamlessly transferable to real
world trading applications. In particular, introducing restrictions such as only being able to buy as many units
as allowed by current balance, or having to sell units if balance is too low would more accurately simulate how
humans trade.
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Appendices

A Additional Risk Metrics

A.1 Value at Risk (VaR)
Value at Risk (VaR) quantifies the maximum expected loss over a specified time period within a given confi-
dence interval, assuming normal market conditions. It is widely used to assess the risk of a portfolio.

(44)
VaRα(t) = − inf{x

: F(x)
> 1− α}

A.2 Expected Shortfall (ES) or Conditional VaR (CVaR)
Expected Shortfall (ES), or Conditional VaR (CVaR), measures the expected loss on days when there is a VaR
breach. It provides a more comprehensive view of tail risk than VaR by averaging losses in the tail beyond the
VaR threshold.

(45)ESα =
1

1− α

∫ 1

α
VaRu(L)du

B Additional Q Learning Schema

B.1 SARSA
SARSA is also a model-free RL scheme, but unlike classical Q Learning is on-policy. The advantage of SARSA
is that it unlocks the full power of temporal difference learning by allowing the user to design an agent that can
look n steps into the future when calculating the TD(n) error. In this setting we use all equations and definition
listed above except for the update equation, which is now defined as follows.

(46)Qnew(sk,ak) = Qold(sk,a) + α(R(n)
∑ − Qold(sk,ak))

(47)R(n)
∑ = (

n

∑
j=1

γ jrk+ j) + γn+1Qold(sk+1,a)

Its very important to note that in order to calculate rk, ...,rk+n we must define which actions the agent will
take at every future time step. Without that we can’t know what the future rewards will be. So in order to solve
this problem the SARSA model forces the agent to choose the optimal on-policy action at each projected time
step.

There is a variation of TD learning that was developed by Sutton in 2015, where instead of looking at any
n-step temporal difference, we take a exponential weighted average of all possible n-step temporal differences.
This idea is known as TD-λ learning and can be formalized by defining the following update scheme.

(48)Rλ
∑ = (1− λ)(

∞

∑
k=1

λn−1R(n)
∑ )

(49)Qnew(sk,ak) = Qold(sk,a) + α(Rλ
∑ − Qold(sk,ak))

Recasting SARSA into a training scheme that incorporates neural networks would result in a loss function of
the following form, where a user could implement n-step temporal difference learning or the TD(λ) framework
described above.

(50)L = E[(R(n)
∑ − Q(sk,ak))

2]
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B.2 Q(σ) Learning
In 2018 Sutton and Barto first formulated the Q(σ) method which was meant to unify the two fundamental
approaches discussed above; Q Learning and SARSA. It introduces a parameter σ, which varies on a scale from
0 to 1, allowing the algorithm to interpolate between these two methods. This allows for Q(σ) to adaptively
balance between the exploration of new strategies (via Q Learning’s off-policy nature) and the exploitation of
current knowledge (via SARSA’s on-policy nature), potentially leading to more efficient learning in complex
environments.

Q(σ) operates by dynamically adjusting the parameter σ for each time step of each episode, which deter-
mines the mix of on-policy (SARSA) and off-policy (Q Learning) learning. The updates to the Q values in
Q(σ) are based on a combination of the expected value (like in Q Learning) and the actual reward received plus
the value of the next n state-action pair (like SARSA), with the balance between these two determined by σ.
We can formalize Q(σ)’s update rule as

(51)Q(St ,At) = Q(St ,At) + α[Rt+1 + γ(σt+1Q(St+1,At+1) + (1− σt+1)Vπ(St + 1))− Q(St ,At)]

The natural question to ask is how σt is chosen at every time step. Asis, Hernandez-Garcia, Holland, and
Sutton proposed in 2018 that in most settings σ should be gradually decreased over the course of the episode
in a manner similar to simulated annealing.

Furthermore, just like SARSA, we can expand this formulation to include multiple ”look-forward” steps.
The variation of Q(σ) that incorporate TD(n) learning.

When recasting this scheme to a deep learning problem, we can apply identical reasoning as for SARSA to
generating a loss function of Q(σ) Learning.

(52)L = E[Rt+1 + γ(σt+1Q(St+1,At+1) + (1− σt+1)Vπ(St + 1))− Q(St ,At ]
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1 Summary
For the last 200 years research into human cognition and decision-making has revolved around rational choice
theory, which assumes that actors are utility maximizers capable of searching and finding rational and optimal
decisions. However human behavioral data doesn’t support the assumptions that we have infinite time nor
infinite cognitive energy to search the full space of candidate choices to produce optimal decisions. Take for
example a hiker, who has an infinite number of paths to choose from. It’s irrational to assume that the hiker is
capable of fully evaluating each of the infinite paths available to them to then choose the most rational/ optimal
path. And yet that is the operating assumption for most modern cognitive models. To remedy this problem,
I propose three axiomatic principles of energy-efficient decision making, along with an optimal-control based
model and Deep Q learning model that capture those principles. I hope that a formalization of my theory of
energy-efficient decision making along with the open-source python code I develop can be used by researchers
in private and academic settings to develop more accurate computational models of human decision making,
that can be used to model agent behavior in a number of fields ranging from market behavior to crowd dynamics.

Beyond classical applications to human and animal way finding, I believe that MPC and Deep Q learning
based way finding models I will develop throughout this proposal have potential applications to the develop-
ment of large language models. Currently LLM’s operate using auto-regressive frameworks that are capable
of searching the possibility space of the ”next word” or token. The model then chooses the most likely next
token based on the context embedded in the previous sequence of tokens. However the MPC and Deep Q
frameworks Ill develop bellow have the potential capability to cost effectively search the space of the next N
tokens to more efficiently plan the sequence of tokens being generated. While applications to LLMs and other
generative AI algorithms may seem particularly interesting to the reader, I’ve chosen to formalize our theory
of decision making by analyzing the classical way finding problem of foraging, since foraging is an especially
intuitive example. Before ending with an explanation as to how the two models can be generalized to LLMs.

Proposal Structure

I will begin by proposing 3 principles of energy-efficient decision before introducing some relevant mathemati-
cal background for their computational implementation. I end by exploring two possible models of agent-based
wayfinding that incorporate the 3 principles referenced above along with their applications.
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2 Proposed Principles of Energy-Efficient Decision Making
Actors engaged in wayfinding will oftentimes miss the optimal trajectory towards their target, whether that be
food, shelter or a mate, due to cognitive energy constraints. In order to construct mathematical models around
this idea, I will first break down the concept of costly cognition, along with its natural consequences.

1. Costly Cognition: Recent literature suggests that cognition requires 20% of the body’s total energy
consumption. It’s these energy constraints that limit an actor’s ability to fully flush out a set of candidate
decisions before adopting an action. Instead, a finite cognitive energy budget forces actors to develop
rough sketches of various candidate decisions. Each of these sketches define a subspace of more detailed
decisions that fall within the category of the decision sketch. In other words, cognitive energy constraints
improve the efficiency of the decision-making process by constraining the space of possible decision, but
can also guide actors towards energy-efficient choices by eliminating an optimal decision space during
the initial screening process.

2. The Subspace Selection Problem: The costly cognition principal forces actors to develop decision sub-
spaces in order to reduce cognitive energy load. The natural question is “How is that subspace selected?”.
I propose that the decision subspaces are evaluated using fuzzy and incomplete heuristics. The internal
system then weighs the probability of success relative to the cognitive energy associated with explor-
ing each of those subspaces. Only after this process is complete will an actor elect to conduct a more
thorough search of a particular subspace to come to a final decision.

3. Decision as Future Projections: I’ve discussed how costly cognition forces actors to rely on rough
decision sketches to choose a decision space to thoroughly explore. I propose that a human decision
maker evaluates those sketches by constantly projecting themselves into possible futures based on those
decision sketches. Each projection is made onto a temporal window chosen by the actor. For example, a
decision made in the pursuit of a goal which the actor heavily values will encourage a projection further
into the future than one of minimal importance to the actor. Regardless of the future projections size,
an actor must consistently re-generate decision sketches at every time step, to adjust to new internal and
external conditions. This process of constantly projecting oneself into the future to create a continuous
stream of decisions produces the effect of a receding horizon. This conceptualization is in line with
our intuition of decision making as a process that becomes increasingly fuzzy and uncertain the further
forward in time an actor looks.

3 Mathematical Background
In this section I provide relevant mathematical foundation of deep reinforcement learning and model predictive
control. In future sections I will use those two frameworks to construct two candidate models of cognitively
constrained wayfinding that incorporates the 3 core principles of decision making outlined above

3.1 Deep Reinforcement Learning
3.1.1 General Reinforcement Learning

Before I begin my discussion of Q learning, I will start with an exposition of the two primary categories of RL:
model-based and model-free. Model-based RL systems create a model of the environment, which includes the
dynamics of how actions lead to subsequent states and rewards. Essentially, it predicts the future states and
rewards for actions taken from a given state. Take for example a gambler who is given a probability function
P(s′,s,a) that provides explicit probabilities as to whether the actor will win or lose a gamble. In other words,
the gambler queries the environment for its transition dynamics. The second approach is model-free, which
is where a system learns a policy or value function directly from interactions with the environment without
constructing an explicit model of the environment’s dynamics. The system learns what to do by trial and error,
adjusting its actions based on the rewards received.
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3.1.2 Q Learning

With the general background of RL out of the way, its important to note that Q learning is a model-free
training scheme. That means that Q learning does not rely on an environment that can produce exact transition
probabilities and must instead use trial and error of near-optimal actions in order to learn the optimal policy.
In order to formalize this type of training scheme I first define the quality function Q(s,a), which tells you the
joint value/quality of taking an action a given a current state s.

To formally define Q(s,a) I first introduce some notation. Let R(s′,s,a) be the reward of transitioning from
state s to s′ through action a, γ be the discount factor of future reward, and V (s′) be the expected value over all
possible future rewards given a current state s′. With that I define Q(s,a) as

Q(s,a) = E(R(s′,s,a)+ γV (s′)) = ∑
s′

P(s′|s,a)(R(s′,s,a)+ γV (s′)) (1)

In other words, Q is the expected sum of the instantaneous reward of the state-action pair (s,a) along with
the discounted future rewards of being at a new state s′ brought on by (s,a). Using the quality function Q(s,a)
we can define an optimal policy π and value function V (s), that considers which action a is optimal and what
the expected reward from taking that action is.

(2)V (s) = max
a

Q(s,a)

(3)π(s) = argmax
a

Q(s,a)

We’ve defined what a q value is and how to construct the quality function Q(s,a), but now we define a
recursive equation to update Q(s,a) as the agent learns through trial and error.

(4)Qnew(sk,ak) = Qold(sk,ak) + α
(

rk + γmax
a

Qold(sk+1,a)− Qold(sk,ak)
)

Let’s dissect this update equation. As we engage in trial and error learning, we update our Q(s,a) by slowly
nudging our q values up or down by a factor of the difference between the actualized current reward rk in addi-
tion to the best possible future reward rk +γmax

a
Q(sk+1,a) (TD-Target) and our predicted reward Qold(sk,ak)).

This difference is sometimes referred to as the “Temporal Difference (TD) error”. We also note that α in this
case is the learning rate.

(5)

TD Target︷ ︸︸ ︷
rk + γmax

a
Q(sk+1,a;θ−)−Qold(sk,ak;θ)

︸ ︷︷ ︸
TD Error

We also note that when calculating the TD error, the agent calculates the future reward by looking one
step into the future. Naturally, the degree to which the agent looks into the future can be modified using the
following updated scheme which looks n steps into the future. This process is known as TD-N learning.

(6)Qnew(sk,ak) = Qold(sk,a) + α(rk + R(n)
∑ − Qold(sk,ak))

(7)R(n)
∑ = (

n

∑
j=1

γ jrk+ j)

where rk+ j is the reward derived from future applications of the agent’s chosen policy π.
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3.1.3 Deep Q-Learning

Now we discuss the process of recasting Q Learning into training schemes that incorporate deep learning meth-
ods like neural networks. This is especially useful in settings where the state space is too large to reasonably
store all q values in a Q table. Here, a deep learning approach seeks to parameterize Q(s,a) as dependant on
some weights θ such that

(8)Q(s,a) ≈ Q(s,a,θ)

In order to optimize for the parameters θ within a Q Learning framework we use a loss function that is
eerily similar to the TD error defined in equation (4).

(9)L = E[(rk + γmax
a

Q(sk+1,a,θ)− Q(sk,ak,θ))2]

We can also choose to recast n-step temporal difference learning framework (TD-N) described above into
the following neural network loss function.

(10)L = E[(rk + R(n)
∑ − Q(sk,ak))

2]

With the loss function properly defined, we can move on to the neural network architecture, and how it
allows us to approximate the Q function. In practice, we find that the architecture of the network varies based
on the use case. For example a team of DeepMind engineers in 2013 coupled the loss function described above
with several convolutions layers and fully connected layers. The inputs were several consecutive frames for
the game, which represented the agent’s state. And the output was one of several possible action that the agent
could take. Regardless of the architecture used the value contained in each output node approximates the value
Q(s,a) for the associated (s,a) which corresponds to the network’s (Input,output) pair.

3.1.4 Policy

In practice, we follow the ε-greedy policy to catalyze off-policy actions by introducing randomness. Formally
ε-greedy is implemented by replacing the max

a
Q(sk+1,a) term in equation 5 with Q(sk+1, ãk+1) where

(11)ãk+1 =

{
random action from A(st), with probability ε
argmaxa Q(st ,a), with probability 1− ε

As training continues we slowly take ε→ 0 using a simulated annealing strategy. The reason the ε-greedy
strategy can be beneficial is that it allows the agent to explore the space of possible actions freely at the
beginning of the training process while also emphasizing exploitation of the agent’s accumulated knowledge
toward the end of training. Please note that for the purpose of feeding the state into the deep Q network, we
must first normalize by applying a soft max function to each column of the matrix st and then flatten the matrix.

3.1.5 Loss Function

We’ve defined the DQN loss function in equation (9) and (10) but in practice the loss is implemented using
various approximations. First the expectation in the Q Learning loss function is approximated using experience
replay by sampling a mini-batch of experiences from the replay buffer. Given a replay buffer D that contains
experiences (s,a,r,s′), a mini-batch of N experiences B = {(si,ai,ri,s′i)}N

i=1 is sampled uniformly at random
from D. Using this strategy we can approximate the loss function in equation (9) as follows.

L(θ) =
1
N

N

∑
i=1

[(
ri + γmax

a′
Q(s′i,a

′;θ)−Q(si,ai;θ)
)2
]

(12)

The next adjustment practitioners use is the integration of the the Huber loss. This is designed to make
our loss function quadratic for small values of the error and linear for large values of the error. The parameter
δ effectively determines the sensitivity of the loss function to outliers. Previously we defined TD Error in
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equation (5), which for the sake of integrating the Huber loss we’ll equate to δ. This final improvement yields
the following loss function.

L =
1
N

N

∑
i=1

L(δ) (13)

where

δ =

(
r+ γmax

a′
Q(s′,a′)

)
−Q(s,a) (14)

L(δ) =

{
1
2 δ2 for |δ|≤ 1,
|δ|− 1

2 otherwise.
(15)

3.1.6 Optimizer

Lastly, in practice the Adam optimizer is used to minimize the loss function. This is an adaptive optimization
algorithm used in training our neural networks. It incorporates momentum to accelerate convergence in rele-
vant directions and introduces bias correction to improve parameter update accuracy. By computing adaptive
moments of gradients, Adam scales updates effectively and ensures numerical stability with a small constant in
the denominator. These combined features make Adam a robust and efficient choice for optimizing our neural
networks.

3.2 Model Predictive Control
The general formulation of MPC involves solving an optimization problem at each control step. The objective is
to find the control inputs that minimize the objective function subject to the model dynamics and constraints.The
general setup for an MPC problem is as follows.

1. Choice Functional:

J(U t+∆
t ,xt) =

t+∆

∑
k=t

l(x(k),u(k))+F(x(T )) (16)

Where:

• J: The choice function to minimize.

• u(t): The discrete function of control inputs

• U t+∆
t : A sequence of future control inputs u(t),u(t +1), . . . ,u(t +∆). For the sake of simplicity the

subscript of U denotes when the sequence begins, and the superscript denotes when it ends.

• xt : The current state of the system.

• l: The stage cost function, evaluating the cost of each predicted state and control action.

• F : The terminal cost function, evaluating the cost of the final state.

• T : Terminal Time End of Episode.

• ∆: Predictive Horizon

2. Subject to:

• System dynamics: x(k+1) = f (x(k),u(k))

• Initial condition: x(0) = x0

• Control and state constraints: u(k)∈ A,x(k)∈ S, where A is the action space and S is the state space.

3. Iterative Algorithm: The user then iteratively implements the following algorithm to trace the evolution
of an agent’s state from a set of initial conditions to a desired terminal state.
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(a) Initialize the agent at state x0

(b) Optimize a choice functional over the predictive horizon. In other words find ũ= argmin
U

J(U∆
0 ),x0)

to determine the next ”best course of action” U∆
0

(c) Apply the system dynamics to determine the next state x1 = f (x0, ũ(0)). Note that despite finding
a sequence of controls from 0 to ∆, the agent only applies the first control in the sequence.

(d) Reinitialize the agent at x1, and optimize the choice functional J(U1+∆
1 ,x1) over the time horizon.

(e) Iteratively apply steps (a)-(c) until the terminal time N is reached.

4 Candidate Wayfinding Models
In this section we propose two wayfinding models. One model will be built using a model predictive con-
trol (MPC) framework, while the other builds upon principles from Reinforcement Learning (RL). The two
models take slightly different approaches to the wayfinding problem. The core difference being that the RL
system focuses on single priority agents with future projections of variable size, while the MPC model focuses
on multi-priority agents with future projections of fixed size. Before we discuss the architecture of the two
candidate models, we’ll begin with some core assumptions.

4.1 Core Assumptions
We begin by outlining several core operating assumption that will be used for both the MPC and RL models.

First we assume that an agent is capable of traversing a d = 2,3 dimensional rectangle. We may choose to
define a topology G within D . G may be mountainous, flat, or another terrain the user chooses.

D = [−δ,δ]x...x[−δ,δ] ∈ Rd (17)

where food sources F is a finite set of coordinate in D such that every f ∈ F is picked from D according
to a uniform distribution f ∼U(D). We also assume that the space D is populated with finite environmental
information. We define a set of environmental stimuli where in is an environmental stimulus like scent, auditory
noise, temperature, or a binary flag b for whether food exists at a specific coordinate, and x is that information’s
coordinate position in Rd .

∀i ∈ I, i = {i1, ..., in,b,x ∈ Rd} (18)

Next we assume that the agent is equipped with energy that can be spent on taking an action or on the
cognitive cost of deciding which action to take. So we let the agent’s energy at time t be Et .

(19)Et ∈ [0,1]

Next we assume that an agent is capable of collecting information from its environment. However we only
allow the agent to collect information from within a radius r around its current location. This is a realistic re-
striction since no agent can reasonably be assumed to have complete and perfect knowledge of its environment.
So the information that an agent can access at any given time is defined as follows, where st,x is the agents
current position in Rd

Ir,t = {i = {i1, ..., i2,x ∈ Rd} ∈ I if |x− st,x|≤ r} (20)

Using the assumptions outlined above we can define the agents state st as a tuple of the agent’s energy,
current information, and current position in space at a given time t. The state space S contains all possible st .

st = {Et , Ir,t ,st,x} (21)

The action space A will be defined as follows, where φ is the magnitude of the agent’s step and θ is the
direction of the step. For the purposes of our simulation, both θ and φ are discretized.
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Figure 1: Action Space Visualization

∀a ∈ A,a = {θ,φ} (22)

If an agent takes an action a = {θ,φ}, we assume that the energy expended on taking the action is directly
tied to the terrain G, since walking up a hill or mountain would naturally require more energy then walking
downhill or on flat ground. We define this change in energy using the following dynamics:

c(st,x,at) =−β∇G(st,x +at) (23)

Finally the reward function will be a piecewise function that represents how close an agent is to its goal.
Note that the agent receives a significantly larger reward once it actually attains its goal, which we define as the
agent reaching the source within a small margin ε. Conversely, if the energy is depleted below some threshold
TE , the agent receives a negative reward, to disincentives a zero energy state, which constitutes death.

R(st) =





1 if ∃ f ∈ F s.t | f − st,x|< ε,
−β1st,E if st,E < TE ,

β2| f − st,x| otherwise.
(24)

4.2 Deep Q Learning Wayfinding Model
We now transition to a possible application of the Deep-Q Learning Framework to the wayfinding problem.
For our purposes we use Q-Learning since its model-free nature more accurately reflects an actor’s uncertainty
regarding the exact outcomes of its actions when engaging in the wayfinding process. Using the state space,
action space, environment, and reward function described above in section 4.1 we construct the following deep
Q learning architecture.
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Figure 2: RL Framework

1. We begin be giving the agent prior knowledge of it environment through a fuzzy memory. This fuzzy
memory functionally serves as the agent’s intuition. To do this we train a Deep Q Network using the
TD-N loss function defined in equation (10), along with the experience replay and Huber loss defined in
section 3.1.5. We note that for training the memory deep Q network we fix N. We also use an epsilon
greedy policy with an epsilon that converges to 0.33 towards the end of the training epoch. Intuitively
the reason for such a high epsilon is to ensure that the agent’s memory deep q network is populated with
a wide breadth of experiences. The algorithm in trained using a the classical vanilla deep Q network
architecture diagrammed bellow.

Figure 3: V-DQN Framework

We define the neural network unit in the diagram above to have the convolutional architecture outlined in
figure 4. The reason why we choose a convolutional architecture is because the environmental informa-
tion along with the agent’s current coordinate position is inherently spatial and ought to be represented
using a tensor in Rd instead of a flattened vector. We also exclude the energy Et from the initial input,
and instead only input st,x and It,x. Because the energy cannot be spatially represented its concatenated
to the flattened vector labeled bellow.
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Figure 4: V-DQN Framework

Note that the memory deep network module is simply an approximation of a the Q function which takes
an input of a state and outputs a estimated value of that state given each action in the action space.
However because memory is often fuzzy and realistic agents don’t have perfect recall we add slight
Gaussian noise to the output. We define the Q function approximated by the Memory Deep Q Network
as QMB

QMB(s) = {(s,a,q(s,a1)),(s,a,q(s,a2)), ...,(s,am,q(s,a2))}+N (0,σ) (25)

2. Next we initialize our agent with an initial coordinate position in Rd , and a complete energy of E0 = 1.
Given that the agent is initialized with a random initial coordinate position, the agent will consequently
gain access to all information within a radius r around its initial position. In other words the agent begins
the simulation with a initial state of s0 as defined above.

3. The agent then queries its memory bank for noisy q-values of all possible actions given its state. Those
values are then passed to the energy evaluation unit. Within the energy evaluation unit the agent evaluates
the average possible reward of each quadrant. This done by calculating quadrant-wise q-value averages.
Then based on the magnitude of the possible reward the agent assigns an N value for each quadrant.
Next the energy evaluation unit measures whether the cognitive cost of projecting forward N steps in
each quadrant is less then the projected reward. If the cognitive cost is larger, the agent ignores that
quadrant. Furthermore, if the amount of energy Et is too low to afford exploring all promising quadrants,
only the top K quadrants are chosen. Intuitively what that means is that the agent is only dedicating
cognitive energy to create future projections of itself in decision subspaces that the agent can afford and
whose potential reward outweigh the expected cognitive costs.

4. The agent then picks the actions in each quadrants selected which provide the largest q-value. Using
those selected actions the TD-N evaluation unit finds the TD-N Target defined in equation (5) for each
quadrant given the N value that was recommended by the energy evaluation unit. Note that the TD-
N calculation is created using the policy recommended by the Memory Deep Q Network. The TD-N
evaluation unit then chooses the course of action with the highest TD-N Target. The agent then applies
that action to produce its next coordinate position. The energy cost of the action defined in equation (23)
along with the cognitive energy used during the TD-N evaluation process (which is positively correlated
to the amount of quadrants explore and the magnitude of the N values for each quadrant) is subtracted
from the total energy Et stored in the Energy bank.

5. Now that the agent has applied an action which produces its next coordinate position, it can interact with
the environment to update its state with the new information It,r it has access to and determine whether its
reward. The way we’ve defined the reward function in equation (24) implies that the agent will receive
a higher reward the closer it is to the food source. If a food source is attained, this triggers an energy
increase for the agent. If the energy is depleted below some threshold TE , the agent receives a negative
reward. The last step involves storing the state, action pair that the agent chose along with the next state
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and reward that state action pair generated in a memory bank that is used to retrain the Memory Deep Q
Network.

6. Periodically, the Memory Deep Q Network QMB is retrained using the new experiences it has stored
in its memory bank using the mini-batching technique outlined in section 3.1.5 along with the same
architecture outlined in Step 1. Intuitively these periodic retraining session can be interpreted as an agent
sleeping, since recent research indicates that sleep and memory consolidation are related processes that
involve integrating new information into long-term memory.

7. Note that the only terminal state for the agent is when energy reaches 0 or if the simulation runs until the
max iterations set by the user.

4.3 Model Predictive Control Wayfinding Model
We now transition to a possible application of the Model Predictive Control (MPC) to the wayfinding problem.
Due to the flexibility of the MPC model framework, we allow our agent to have multiple priorities. This seems
like a natural extension since most wayfinders are forced to balance multiple priorities. Take for example a
mammal who must balance its priorities of finding food, shelter and a mate. For the purposes of this model we
impose that the agent’s set of priorities F is finite.

(26)F = {P1,P2, ...,Pm}

In order to account for a multi-priority agent we make several small alterations to how we define the envi-
ronment, environmental information, and reward function in the section 4.1. First we adjust the environment
we create m goal sets Fi for each priority each of which is a finite set of coordinates in D such that every f j ∈ Fi
is picked from D according to a uniform distribution f j ∼U(D). For example if priority Pk is finding shelter,
then there would be an associated finite set of coordinates Fk that represents where in D shelter exists. This
means that the elements in the set of environmental stimuli I would also include binary flag bi for whether a
goal associated with each priority exists at a specific coordinate.

∀i ∈ I, i = {i1, ..., in,b1,b2, ...,bm,x ∈ Rd} (27)

This adjustment means we must also add a new reward function for each priority. So our new generalized
definition of the reward function defined in equation (24), would be as follows.

Ri(st) =





1 if ∃ f ∈ Fi s.t | f − st,x|< ε,
−β1st,E if st,E < TE ,

β2| f − st,x| otherwise.
(28)

With those core adjustments defined, we can draw our attention to the central question for multi-priority
agents; How does the agent choose which priority to focus on. To answer this question we propose an activation
function an, which measures to what extent an agent should focus on its nth priority.

an(st) =
Rn(st)Pn(st)

D(Pn)∏n−1
0 Rn(st)Pn(st)∏m

n+1 Rn(st)Pn(st)
(29)

Let break down how this activation function works. The activation function is directly related to the the
reward of being in a current state with respect to the nth priority, weighted by the probability of that reward being
attained. The probability measure Pn incorporates both the agent’s intuitive and experiential understanding of
the environment signals in to produce a probability of success. In other words the higher the expected reward
of pursuing the nth priority, the more likely that the agent will choose to pursue that priority. However, the
activation function is inversely related to D(Pn), which represents the cognitive complexity of attaining the
goals of the nth priority. This is fairly intuitive since an agent will tend to steer away from complex priorities
due to their large cognitive costs unless the expected reward is sufficiently large. Lastly the activation function
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of the nth priority is inversely related to the expected rewards of the other priorities. In this way, the activation
function also models the opportunity cost of pursuing one priority over another.

Next we construct a choice functional that must be maximized at every given time step of the simulation,
similar to that defined in equation (16). Where U t+∆

t is the sequence of actions u(k) ∈ A from t to t +∆.

J(U t+∆
t ,st,xx) =

t+∆

∑
k=t

m

∑
j=1

a j(st)R j(sk,x,u(k)) (30)

Through this choice function the decision to name the an the activation function becomes more clear, since
an quite literally switches certain priorities on and off. Next we define the agent’s dynamics. In order to
adhere to the costly cognition principle, the agent’s dynamics must be directly linked to its cognitive energy
consumption. In other words if the agent chooses to explore a subspace that is relatively complex, its energy
state Et must be reduced, and if a goal like finding food or shelter is reached, its energy state must be reverted
to the maximum energy state of 1. We formalize the system’s dynamics below.

d̃ =
m

∑
j=0

a j(st)D(Pj) (31)

Et+1 = H(st ,at) (32)

H(st ,at) =

{
Et −β1d̃− c(st,x,at) if ∑m

j=0 Rm(st)<= 1
1 otherwise.

(33)

d̃ is the weighted complexity of the subspace chosen. c̃(a) is the energy cost of taking an action and
c̃(st,x,at) is defined in equation (23). With the choice functional and system dynamics defined we implement
the same iterative algorithm outlined in section 3.2. By design this scheme captures that core principles of
energy-efficient decision making since at every time step the actor scans over a number of cognitively feasible
decision subspaces, selects a subspace, evaluates candidate futures within its horizon, collapses down to a
single decision, then iterates.

Algorithm 1 Model Predictive Control Algorithm
1: st,x = x0, t = 0, Et = E0 N = Terminal Time
2: while t < N do
3: ũ = argmin

U
J(U t+∆

t ,st,x)

4: d̃ = ∑m
j=0 a j(st)D(Pj)

5: Et+1 = H(st , ũ(t))
6: st,x = st,x + ũ(t)
7: t = t +1
8: end while

We propose one small adjustment to the algorithm listed in section 3.2 and formalized above in order to
imbue the agent with a sense of memory. Recall that MPC functions by making projections over a time horizon
∆, but only uses the first part of that projection to adjust its behavior before generating another projection.
Instead we propose taking a weighted linear combination of the K past projections. For example if an agent
is currently at time t, and is optimizing the function J to determine an action at time t, then it would weight
the actions taken at time t in each of the last K future projection control sequence U t+∆−k

t−k (t). We could also
reasonably adjust the weights γ of the linear combination to reflect the degree to which an agent prioritizes new
future projections over older projections.
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Algorithm 2 Model Predictive Control Algorithm With Memory
1: st,x = x0, t = 0, Et = E0 N = Terminal Time
2: while t < N do
3: ũ = ∑K

k=0 γk argmin
U

J(U t−k+∆
t−k ,st−k,x)

4: d̃ = ∑m
j=0 a j(st)D(Pj)

5: Et+1 = H(st , ũ(t))
6: st,x = st,x + ũ(t)
7: t = t +1
8: end while

5 A Potential Application to Large Language Models (LLMs)
As reference in section 1, the applications of energy efficient agent-based decision making models like the MPC
and RL models developed above have potential applications that span far beyond basic food/shelter foraging.
In fact we propose that the models we developed in this proposal have direct applications to the development
of more efficient LLM models.

For the purposes of applying our 2 models to improving LLM models, we must first re frame the LLM
model as an agent in and of itself. This agent has an evolving state which is an expanding sequence of
words/tokens ti. Whereas the action space, of the agent is the next word in the sequence that the agent can
predict.

sn = {t1, t2, t3, ..., tn} (34)

A = {a− z,0−9, (35)

At every time step the the agent evaluates which token in the action space A maximizes a likelihood of that
token coming next given a current sequence of tokens st , then chooses that token and adjusts the state. Under
this framing, it becomes fairly clear why an RL or MPC model can be useful in this setting. In the case of
the MPC and RL models, the LLM agent would be capable of predicting N tokens in advance before making
a prediction. Furthermore the two models also allow the LLM agent to actively explore multiple sub spaces
of potential token sequences in an energy-efficient manner before committing to a prediction. This approach
may allow LLMs to avoid providing inaccurate information by blindly choosing the next most probable token,
and replacing that approach with one that can generate text in the same way as a measured human speaker (i.e
Thinking before you speak!).
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Abstract

We introduce the basics of quantum computing and simulation of quantum systems on
classical computers. We then discuss noise in quantum systems and how it is classically
modelled, along with the difficulties of simulating quantum noise on classical computers.
Our primary question is how to efficiently simulate quantum noise by leveraging existing
techniques based upon the Gottesman-Knill theorem, which provides efficient simulation of
circuits containing only Clifford gates. We follow this by describing our progress thus far in
exploring three primary approaches. First, exploring methods to decompose a noise operator
into a sum of cliffords via mixed integer linear programming and using these decompositions
to classically simulate noisy quantum circuits within the stabilizer formalism first proposed
by Aaronson and Gottesman (2004). We find that the a Clifford decomposition is not
guaranteed to have low rank decompositions and that at best the runtime of simulating noise
using Clifford decompositions would be O(2k), where k is the number of Kraus operators
applied. Second, we explore the process of dilating our space to convert our noise operators
into unitaries in a larger space. Specifically we propose two unitary dilation based algorithms
for simulating noise; Sz.-Nagy and Stinespring’s dilation algorithms. The two algorithms
yield respective run-times of O( 1

δ∆2 sn
3η−21.17t) and O(n2

∏k
i=1 |ξi|+ n3

∑k
i=1 |ξi|3). Third

we propose a theoretical framework for generalizing the T-Gadget approach developed by
Bravyi and Gosset (2016). Through numerical simulations we show that the generalized
framework can be used to produce noise simulation algorithms with efficient runtime and
space complexity.
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Chapter 1

Introduction

In the early 1980s, Feynman and Manin among others proposed the concept of a so-called
quantum computer that would simulate quantum systems more effectively than classical
computers, following the development of quantum computing theory [1; 13, ch. 4]. Since
then, quantum computing has been developed, studied, and applied to problems beyond
simulating quantum physics. Today, new quantum algorithms like Shor’s algorithm theo-
retically achieve exponential speed up in prime factorization and have the potential to be
used in fields such as cryptography, where quantum algorithms can potentially break widely
used RSA encryption schemes [13, ch. 4.1]; and in optimization, where quantum annealing
can solve optimal trading trajectory problems [? ].

Unfortunately, real-world quantum computers face significant challenges in producing
consistent results due to errors and decoherence brought on by quantum noise; when cutting-
edge applications may require circuits comprised of billions of gates, the error in implement-
ing a single gate in order to perform reliable computations must be orders of magnitudes
smaller than what is currently accomplishable on state-of-the-art quantum processors. In
order to solve this problems, researchers have been developing and testing quantum error
correction codes to increase the fault-tolerance of quantum devices, at the expense of in-
creased time or memory requirements [7]. Efficient simulation of noisy circuits on classical
computers would therefore allow those without access to quantum hardware to debug or
understand the boundaries of potential quantum speeds ups of quantum algorithms [? ].

However, the classical simulation of quantum systems remains a difficult problem due
to exponential computational complexity requirements. Namely, since an n-qubit quan-
tum system is represented by (C2)⊗n, the amount of memory required to näıvely store a
state vector scales as O(2n); moreover, to evolve the system under a unitary transforma-
tion U ∈ H((C2)⊗n) requires O(23n) time. Functionally, classical simulations have been
limited to systems with fewer than approximately 50 qubits [16], where for an example, the
Google Quantum AI team experimentally performed a computational task on 53 qubits with
quantum hardware, which was later then estimated to take approximately 10,000 years1 to
simulate using classical simulation [15]. One solution to this computational cost was in-
troduced by Gottesman and Knill, where he introduced the stabilizer formalism, a method
to simulate a subset of quantum circuits (namely circuits composed of Clifford gates) in
polynomial time. This was later improved to universality via Bravyi’s method which in-
volves including T gates to the set of Cliffords [5]. Bravyi shows that any unitary can be
simulated by decomposing it into C, H, P, and T gates and T gates can be simulated within
the stabilizer formalism by adding a mild exponent to the computational cost.

1This figure is said to be exaggerated, by [15] and others.
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However, some noise operators are not unitary and as a result, simulating this quantum
noise can be computationally expensive. It is at this hurdle that our research is situated:
In collaboration with NASA Ames Research Center (ARC) we aim to exploit the algebraic
structure of quantum noise to develop a computationally cheaper representation of noise to
be deployed in classical quantum simulations.

In this report, we will first introduce the necessary background to simulating quantum
circuits within the stabilizer formalism, and then we will talk about the different methods
used for simulating non-unitary noise channels. The first two methods we propose are
dilation methods, which allow us to lift our noise operators to a higher Hilbert space such
that the lifted operator is unitary, and then we employ Bravyi’s method to apply the
unitaries within the stabilizer formalism . The second method we propose is an extension
of Bravyi’s work which generalizes his T gadget to diagonal and off diagonal operators,
which allow us to implement many noise channels, as many are composed of diagonal and
off-diagonal operators [6]. We end with methods that held promise but were unfinished,
namely decomposing our noise operators into a sum of Cliffords, and applying each Clifford
to a copy of our circuit.

5



Chapter 2

Background

2.1 Gottesman–Knill theorem

Theorem (Gottesman–Knill theorem). A quantum computation performed with Clifford
operations and measurements of observables in the computational basis may be simulated in
polynomial time on a classical computer.

C =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , H =

1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)

The Gottesman-Knill theorem tells us we can simulate circuits composed of Clifford gates
in polynomial time. The Clifford gate set is a finite group defined by the generating set of
C, H, and P gates (mod U(1)). The Clifford group is the normalizer of the Pauli group,
meaning that conjugating a Pauli operator by a Clifford unitary results in another Pauli
operator. Specifically for U(n) being the n-qubit unitaries and P (n) being the n-qubit Pauli
group,

C(n) ≡ {c ∈ U(n)|∀p ∈ P (n), cpc† ∈ P (n)}
The process that allows us to simulate these Clifford circuits in polynomial time is based
on the stabilizer formalism. Note that the Gottesman-Knill theorem and the stabilizer
formalism supports cheap implementation of quantum entanglement, a property that is
hard for other frameworks to simulate [21].

2.1.1 Stabilizer formalism

A stabilizer state is any state |s⟩ such that |s⟩ = C |0⟩⊗n for some n-qubit Clifford C. All
stabilizer states are in unique correspondance to a stabilizing group, Stab(|s⟩) = {P ∈
P (n) | P |s⟩ = |s⟩. The stabilizing group is a finite group of order n where |s⟩ is an n-qubit
stabilizer state. Notice that when we apply a Clifford operator C to a stabilizer state |s⟩
with a stabilizer group Stab(|s⟩) = ⟨g1, g2, . . . gn⟩:

C |s⟩ = Cgi |s⟩ = CgiC
†C |s⟩

Then for the generators gi of Stab(|s⟩), CgiC† are the generators of the stabilizing group
of C |s⟩. Because these generating sets are in one to one correspondance with a stabilizer
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state, we can track the generators of the stabilizing group across the circuit instead of the
state vector itself. This initially seems computationally expensive as the process involves
matrix multiplication, but there is a computationally efficient way to update our stabilizer
group, and that is via the tableau method.

2.1.2 Stabilizer Tableau

The stabilizer tableau is a compact representation of the generating set of the stabilizer
group that can be efficiently updated using bitwise operations. The matrix can be repre-
sented as a binary matrix:




s1
s2
s3
s4

x1,1 x1,2 x1,3 x1,4
x2,1 x2,2 x2,3 x2,4
x3,1 x3,2 x3,3 x3,4
x4,1 x4,2 x4,3 x4,4

z1,1 z1,2 z1,3 z1,4
z2,1 z2,2 z2,3 z2,4
z3,1 z3,2 z3,3 z3,4
z4,1 z4,2 z4,3 z4,4




where s represents the sign( 1 for minus and 0 for positive), and x and z are binary ma-
trices representing the Pauli X and Z components, respectively. Each row of the tableau
corresponds to a generator of the stabilizer group. For example, the first stabilizer is equal
to

Si = x1,1z1,1 ⊗ x1,2z1,2 ⊗ x1,3z1,3 ⊗ x1,4z1,4,

xi,jzi,j : 00→ I, 01→ Z, 10→ X, 11→ Y

The ith column of the x matrix xi and z matrix zi together correspond to the ith qubit.
Notice, however, that this does not imply that the stabilizers of the ith column are nec-
essarily the stabilizers of the ith qubit in the system, as the stabilizer formalism supports
entanglement, so the qubits may be inseparable. As an example, consider the following
tableau:

[
1
1

0 0
1 1

1 1
0 0

]

The generating set for this stabilizing group is Stab(|ϕ+⟩) = {ZZ,XX}. Notice the columns
of the first and second qubits do not correspond to the stabilizing group of the individual
qubits, as they are an entangled state |ϕ+⟩ = 1√

2
(|00⟩+ |11⟩). Recall that the set {C,H, P}

are a generating set for all Cliffords, thus when creating and applying Clifford circuits, we
apply C, H, and P gates to our tableau. There are rules for how to update the tableau
when applying these gates which are outlined in [2]. Their improved tableau also allows
for random measurements in O(n2) time. The Stabilizer Tableau allows an efficient way
to store and update the stabilizing group for any n-qubit stabilizer state when applying
Cliffords to the system. Recall, however, that the Clifford gate set is not universal in that
we cannot apply all unitaries via a composition of C, H, and P gates. As it turns out,
including one more gate, canonically the T gate, makes this generating set universal.

2.2 Noise Channels

In this discrete setting, noise channels acting on our system are completely positive, trace
preserving maps mapping density matrices to density matrices, ϕ : ρ 7→ ρ′. This mapping
is called operator sum representation.
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Definition. Operator-sum representation. A map Φ : ρ 7→ ρ′ has a Kraus operator-sum
representation (OSR) [i.e., Φ(ρ) =

∑
αKαρK

†
α with

∑
αK

†
αKα = I] if and only if it is

linear and completely positive trace preserving (CPTP).

It is important to note here that the Kraus operators Ki may not be Clifford. In fact,
many of them are not even unitary. The noise channels we’re interested in simulating
are noise channels where some or all of the operators are non-Clifford, as such channels
are more difficult to simulate. Consider two noise channels, in terms of their constituent
Kraus operators of some operator-sum representations: the phase dampening map and the
amplitude dampening map. The phase damping map is defined as Φ(ρ′) = pρ+(1−p)ZρZ.
Then the Kraus operators are K0 =

√
pI and K1 =

√
1− pZ. This map can be understood

as:

ρ 7→ ρ′ =

{
ρ with probability p

ZρZ with probability 1− p

The amplitude damping map is defined as Φ(ρ) = K0ρK
†
0 + K1ρK

†
1 where the Kraus

operators are K0 = |0⟩⟨0|+
√
1− γ|1⟩⟨1| and K1 =

√
γ|0⟩⟨1|. This map can be understood

as:

|0⟩ → |0⟩ with probability 1

|1⟩ → |0⟩ with probability p

or if the density matrix is written as
(

ρ00 ρ01
ρ∗10 1−ρ00

)
then ρ′ is given as

ρ 7→ ρ′ =





(
ρ00

√
1− γρ01√

1− γρ∗01 (1− γ) (1− ρ00)

)
with probability 1− γ

γ(1− ρ00)|0⟩⟨0| with probability γ

2.2.1 Quantum trajectories method

Obviously, working with density matrices is much more expensive than working with pure
states, so we wish to avoid implementing OSR. Instead of working directly with operator
sum representation, we can apply a method that allows us to work only with pure states,
and still apply a full channel. Given a set of Kraus channels ξi = {Ki,j} and a pure state
|ψ⟩, one can sample the output of applying the channels to a ket by sampling and applying
a single Kraus to the ket per channel by the given probability distribution:

pi = ⟨ψK†
i,j |Ki,jψ⟩

More details of the algorithm can be found here[? ]. This means that the probability
of choosing a given Kraus is dependent on the current state of the system. We also note
that the Kraus operators need not be Clifford or unitary, meaning they do not fit within
the stabilizer formalism and cannot be immediately decomposed into CHPT gates to allow
a gadgetized implementation. Thus we introduce various methods for applying these non-
unitary operators K to our stabilizer state |s⟩.

Theorem 2.1 (Solovay-Kitaev algorithm [11]). Any unitary matrix can be approximated
through the Solovay-Kitaev algorithm within error ϵ, which has been optimized to use
O(log(1/ϵ)1.45) total gates.
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The Solovay-Kitaev algorithm provides a computational efficient way to decomposing
unitary matrices into compositions of C,H,P and T gates. However, notice that the Clifford
decomposition of the T gate has rank 2. Thus, in order to simulate t number of T -gates,
we need 2t tableus. [5] introduces the idea of a T-gadget, which can substitute the spot of
each T-gate.

|ψ⟩ C1

|T1⟩
0

Figure 2.1: T-gadget. We perform a forced measurement on the ancillary qubit to the |0⟩ state.

Rather than relying upon a Clifford decomposition of the T -gate, one can initialize an
ancillary qubit in the |T ⟩ state and apply a series of Clifford operators and measurements
on the extra qubit and current state to achieve the same result as applying a T -gate.

Specifically, this |T ⟩ =
(

1

eiπ/4

)
. Although using T-gadgets removes the cost of applying

the T-gate, there is a new cost in terms of storing these ancillary qubits held in the |T ⟩-
state. Specifically, we must store |T ⟩⊗t. Notice that |T ⟩ actually is not a stabilizer state.
Thus, the cost comes from the stabilizer decomposition of |T ⟩⊗t.

Notice that |T ⟩ = |0⟩ + eiπ/4 |1⟩. Thus, an upper bound on |T ⟩⊗t = (|0⟩ + eiπ/4 |1⟩)⊗t

which has rank at most 2t. However, because |T ⟩ is tensored with itself many times, there
is reason to believe that one can compress the decomposition of the large tensor product
into one with fewer terms. Bravyi and Gosset goes through some details showing that one
can find a decomposition of rank 1.17t

δ which approximates |H⟩⊗t within an error bound of
δ.

Notice that |T ⟩ = eiπ/8HP † |H⟩ for |H⟩ =
(
cos(π/8)
sin(π/8)

)
. Thus, if one can represent

|H⟩⊗t with a low rank decomposition, then they can also obtain an efficient decomposition
of |T ⟩⊗t by applying Clifford gates and a phase shift.

We work with |H⟩ instead of |T ⟩ because |H⟩ has nicer properties. Namely, that |H⟩ =
|0⟩+|+⟩

2v where v := cos(π/8). Thus, if we define |0̃⟩ := |0⟩ and |1̃⟩ := |+⟩, then we get the
expression:

|H⟩⊗t = (
|0⟩+ |+⟩

2v
)⊗t =

1

(2v)t

∑

x∈Ft
2

|x̃1...x̃t⟩ (2.1)

Definition 2.1 (Z(L)). The normalization function Z maps subspaces L of Ft
2 as follows:

Z(L) =
∑

x∈L
2−|x|/2 (2.2)

Where | · | is defined as the hamming weight of ·.

The approximations of H⊗t are based on choice of L. For any given k-dimensional
subspace L, there is the corresponding approximation which has rank 2k:

|L⟩ = 1√
2kZ(L)

∑

x∈L
|x̃1...x̃t⟩ (2.3)
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The above decomposition has rank 2k because there are a total of 2k bitstrings in a
k-dimensional subspace L, and each bitstring corresponds to a unique stabilizer state.

Definition 2.2 (Approximation Error:). The error function δ is defined such that any given
approximation |L⟩, the error is given by:

δ|L⟩ = 1− ||⟨H⊗t|L⟩||2

Bravyi and Gosset provides several algebraic steps and shows that this error is precisely
equal to [5]:

δ(|L⟩) = 1− 2kv2t

Z(L) (2.4)

Thus, to minimize the error, one must minimize Z(L). Bravyi and Gosset’s paper shows
that if k is chosen to the positive number satisfying 4 ≥ 2kv2tδ ≥ 2, then one can find a
subspace with error less than δ after sampling O(1δ ) k-dimensional subspaces [5]. Moreover,

the rank of this subspace will be 2k which is approximatly 2∗v−2t

δ which is in O(1.17
t

δ ).
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Chapter 3

Clifford and stabilizer
decompositions

In Bravyi et al.’s 2019 paper [4], the so-called sum-over-Clifford method is presented to
simulate arbitrary unitary circuits by finding δ-approximate decompositions into stabilizer
states, and is stated to be comparable in efficiency to gadgetization methods, but at the at
the benefit of being more robust.

Proposition 3.1 (Sum-over-Cliffords method, [4, sec. 2.3.2]). Given a unitary circuit U on
an n-qubit system, we claim we can approximate within arbitrary error δ the output U |0n⟩
by a superposition ψ of k ≈ O(δ−2) stabilizer states:

∥U |0n⟩ − |ψ⟩∥ ≤ δ, |ψ⟩ :=
k∑

α=1

bαCα|0n⟩,

where Cα are Clifford operators, using some form of random sampling.

The choice of approximating with stabilizer decompositions is not an arbitrary one: the
rank of a pure state’s stabilizer decomposition is actually a measure of magic for pure states.
In other words, stabilizer rank quantifies the difficulty1 of simulating a circuit with our pure
state as an outcome [10].

Definition 3.1 (Stabilizer rank, [6]). The stabilizer rank χ(ψ) of a pure state ψ on an
n-qubit system is the smallest integer for which ψ can be written as a superposition of χ(ψ)
stabilizer states.

However, as there are finitely many stabilizer states, almost every2 state vector will
attain the maximal stabilizer rank 2n of the size of a basis for the system, which can be
known via Sard’s theorem. Consequently, this implies arbitrary unitary circuits are difficult
to simulate. It is for this reason we introduce the concept of approximate stabilizer de-
compositions, which analogously quantifies the approximation of a arbitrary unitary circuit
with a circuit that is easier to simulate.

Definition 3.2 (Approximate stabilizer rank, [4, def. 2]). Given δ > 0, the δ-approximate
stabilizer rank χδ(ψ) of a pure state ψ on an n-qubit system is the smallest integer for which
ψ can be approximated within δ as a superposition of χδ(ψ) stabilizer states.

1With respect to the stabilizer formalism, meaning in terms of T -cost.
2I.e., with probability 1.
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For the purpose of obtaining decompositions of unitary operators themselves, we intro-
duce analogous definitions for Clifford decompositions.

Definition 3.3 (Exact and approximate Clifford rank). For an operator on a quantum
system, we define the exact and approximate Clifford ranks for decompositions into linear
combinations of Clifford operators similarly.

3.1 Restatement of decomposition problem

Problem. Suppose we are in Cn and have a large but finite subset of vectors X =
{x1, . . . , xα} that spans the space. Given an arbitrary vector in Cn, how can we find a
decomposition by elements of X within error of at most δ that minimizes the rank, or num-
ber of terms, of the decomposition?

In our case, our overfull spanning sets are the stabilizer states and Clifford operators
for a state space and its space of operators. We were tasked with investigating Clifford
decompositions of operators by NASA Ames for use in modified stabilizer simulations; such
has been mentioned as an area of development for other quantum simulators [8, 14].

• Known extensively in signal processing literature as the sparsification problem [20].

• Known problem in quantum information theory in constructing certain types of codes,
such as Reed-Muller codes [3].

Finding a δ-approximate decomposition into k elements of X is equivalent to being
within δ distance of the k-dimensional subspace spanned by those elements.

Definition 3.4 (Grassmannian, Grk(Cn)). We define the Grassmannian Grk(Cn) to be the
collection of all k-dimensional subspaces of Cn. On account of the correspondence between
the k-dimensional subspaces and k-rank projection operators, we are endowed with a inner
product and metric given by:

⟨W,V ⟩Grk(Cn) := ⟨ProjW ,ProjV ⟩ = Tr(Proj†W ProjV ),

distchord(W,V ) = 1√
2
∥ProjV −ProjW ∥ = 1√

2

√
Tr[(ProjV −ProjW )†(ProjV −ProjW )]

Grassmannians have more structure than simply an inner product, and are actually
dimension k(n− k) compact smooth manifolds constructed from a quotient of the unitary
group U(Cn). This, however, is not relevant to us, as we will primarily care about only
geometric considerations related to the various forms of metrics and inner products that
can be induced on Grk(Cn).

With a metric and inner product established on the Grassmannians relating the geom-
etry of linear subspaces, this problem of finding such k-rank δ-approximations turns into a
covering problem Grk(Cn).

3.2 Computational geometry viewpoint

Covering lemmas are basic tools in computational geometry as intermediary technical result
concerning pairing down a cover for a subset of a metric space to form a subcover with
desirable properties.
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Theorem 3.1 (3r-covering lemma). Given a cover for a subset of a sufficiently nice metric
space, there exists a subcover consisting of pairwise disjoint sets that can be dilated by 3 to
once again cover the entire subset.

Lifting a cover of δ-balls on Grk(Cn) to Cn via the isometry provides a covering by regions
that guarantee a δ-approximate k-decomposition, hence we wish to reduce our search space
of subspaces check for decompositions.

Optimal configurations for packings minimize the angles between the centers of these
balls, subject to restrictions on the maximal diameter according to a pre-determined error
bound.

Theorem 3.2 (Conway-Hardin-Sloan simplex bound, [18, cor. 4]). Given a finite set S ⊂
Grk(Cn), the largest inner product α between any two distinct subspaces in S satisfies

α ≥ k k|S| − n
n|S| − n,

where equality occurs if and only if |S| = n2 and and S form a simplex in a hyperplane of
Rn2−1.

Recalling our problem, since we are starting with a given overfull basis to pare down to
a packing, finding any near-optimal configuration depends on the geometry of the spanning
set.

3.2.1 Geometry of stabilizer states

The configuration of stabilizer states of an n-qubit system are fairly well understood, as per
Garc̀ıa, Markov, and Cross’s 2017 paper, On the Geometry of Stabilizer States [9].

• Stabilizer states are distributed uniformly on the unit circle of the state space, and
locally are identical in with respect to relations with nearest neighbors.

• The maximal inner product attainable by any two n-qubit stabilizer states is 1/
√
2,

or equivalently, the minimal distance is
√

2−
√
2 ≈ 0.7.

• The probability of randomly sampling nearby stabilizer states approaches zero as the
number of qubits increases, which would make it difficult to näıvely construct high
resolution packings.

3.2.2 Geometry of Clifford operators

It is known that the collection of Clifford operators for a quantum system form a 3-design
[22].

Definition 3.5 (Unitary t-design, [22, def. 1]). A finite collection of unitaries S of dimen-
sion d is said to be a t-design for some integer t if for all linear operators X on Cd⊗t, the
following holds: ∑

C∈S
C⊗tX(C†)⊗t =

∫

U(d)
U⊗tX(U †)⊗t dµHaar .

13



A rough interpretation of this property is that the Cliffords operators are distributed
very evenly, enough for 3-twirling to be equivalent to Haar-random unitary twirls.

Oszmaniec, Sawicki, and Horodecki [14] connects unitary t-designs to ε-nets, meaning
subsets of unitaries that approximate every unitary operation up error ε: only universal
gatesets form ε-nets for arbitrary ε > 0, therefore there is a limit to which we can approxi-
mate with Cliffords.

3.3 Discussion on decomposition methods

Näıvely, searching through subspaces of very high-dimensional spaces is hard: in the case
of k dimensional-subspaces spanned by Clifford operators, our search space is on the order
of
(O(2n)

k

)
.

Greedy algorithms for searching through a collection of subspace coverings containing
a vector generally exist, but likely would require looking through the literature to deal
with the non-orthogonality of potential decompositions; a good place to start would be [20,
sec. III.D] and move on to reviewing more current methods in signal processing for the
sparse representation problem.

However, since stabilizer states and Clifford operators are distributed relatively uni-
formly in space, these points may already form a near-optimal packing configuration. There-
fore if looking for a computational advantage by reducing our search space of subspaces,
we may already be in a worse case scenario. It follows that issues regarding the lower
bounds on minimal error present in stabilizer or Clifford decompositions may present issues
in implementing these methods computationally.

3.4 Application: Clifford decompositions of small

Kraus operators with mixed-integer linear pro-

gramming

One approach to simulating a Kraus operator Ki within the stabilizer formalism is to
decompose the operator into a weighted sum of Cliffords,

Ki ≈
χδ∑

i

ciRi

Where χδ is the rank required to have δ L2 error in the decomposition. Given a circuit
|ψ⟩ → U1◦K1◦U2◦K2 and the decompositions of the Kraus operators into Cliffords, we can
simulate the circuit by creating χδ,i copies of our stabilizer tableau for Kraus operator Ki,
and applying one Clifford Ri from the decomp to one tableau Si. At the end of our circuit,
we can convert each tableau into it’s vector representation, scale by the stored scalar ci,
and combine it with all other tableaus to retrieve the final ket of the circuit.

To find such decompositions, we can formulate this as an optimization problem by
introducing the following variables:creal ∈ Rm, the real part of the coefficients; cimag ∈ Rm,
the imaginary part of the coefficients;y ∈ {0, 1}m, binary variables indicating whether a
Clifford operator is used;ereal ∈ R4, the real part of the error termsl; eimag ∈ R4, the
imaginary part of the error terms. λ is the weight placed on minimizing the rank. The
larger lambda is the more weight will be placed on minimizing rank instead of error and
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vice versa. The objective is to minimize the sum of the errors and the number of vectors
used:

min
4∑

i=1

ereal,i +
4∑

i=1

eimag,i + λ
m∑

j=1

yj

Subject to the following constraints for the real and imaginary parts:

χδ∑

j=1

(Rreal,ijcreal,j −Rimag,ijcimag,j)− xreal,i ≤ ereal,i ∀i

xreal,i −
χδ∑

j=1

(Rreal,ijcreal,j −Rimag,ijcimag,j) ≤ ereal,i ∀i

χδ∑

j=1

(Rreal,ijcimag,j +Rimag,ijcreal,j)− ximag,i ≤ eimag,i ∀i

ximag,i −
χδ∑

j=1

(Rreal,ijcimag,j +Rimag,ijcreal,j) ≤ eimag,i ∀i

Linking constraints to ensure coefficients are zero if not used:

creal,j ≤Myj ∀j

creal,j ≥ −Myj ∀j
cimag,j ≤Myj ∀j
cimag,j ≥ −Myj ∀j

Note that our search space is the finite set of n-qubit Cliffords, which becomes intractible
at n = 3.

|Cn| =
n∏

j=1

2(4j − 1)4j = 2n
2+2n

n∏

j=1

(4j − 1)

This tells us that at higher qubit systems, finding a suitable Clifford decomposition
using mixed integer linear programming becomes infeasible. Also, the memory scales as
O(
∏k

i ξδ(Ki)) because we must create ξδ(Ki) copies of however many tableaus we currently
have each time we wish to apply another Kraus. As an example, consider a set of two Kraus
operators, each with a rank two decomposition. Then every time we apply either Kraus to
our system, our system grows by a factor of two, so the number of tableaus we are storing
grows to 2k where k is the number of Kraus operators being applied. The scaling of this
method is unfavorable, which led us to consider other potential solutions.
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Chapter 4

Dilation Methods

A noise channel ξi = {K1, ...,K|ξi|} is a collection of distinct Kraus operators that form a
completely positive and trace preserving (CPTP) map [13]. Where the channel size |ξi| is
number of Kraus operators contained in the noise channel. Kraus operators are traditionally
non-clifford and therefor can not be naively applied within stabilizer formalism.

However through the application of stabilizer tableau’s [2] and T-gadgets [6], we can
implement circuits of unitary operators using stabilizer formalism in a reasonable runtime.
In an effort to exploit these tools Suri & Marshall proposed the use of unitary dilation’s
to simulate noise using tools originally designed for simulating unitary circuits [19]. Bellow
we discuss how unitaries can be simulating using stabilizer formalism, before exploring the
potential applications of applying noise to a quantum circuit through Stinespring and Sz.-
Nagy dilation’s Dilations. We note that for the remainder of this section we assume that
any noise channel ξ represents local noise and thus operates on one qubit.

4.1 Simulating Unitaries

A unitary operators can be arbitrarily approximated using the CNOT, Hadamard, Phase
and T gates. In other words {CNOT, H, P, T} are considered a universal gate set.

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


, H = 1√

2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, T =

[
1 0

0 ei
π
4

]

While we know that its theoretically possible to form a Clifford + T approximation
of any unitary, it is useful to have an algorithm capable of finding these decomposi-
tions. The problem of decomposing arbitrary unitaries into, {CNOT,H,P,T} gates is a
well studied problem with recent results indicating that the upper bound on the number of
{CNOT,H,P,T} gates required to form an accurate decomposition using the Solovay-Kiteav
algorihtm is O(log(1ϵ )

1.44042...+δ) [11].
As discussed in section 2 the {CNOT,H,P} are contained in the Clifford group, and can

therefore be efficiently simulated using stabilizer formalism. Whereas the T gate can be
efficiently simulated by adding one ancillary |T ⟩ magic gate for every T gate in the unitary
decomposition. At this point its useful to have some measure of magic as it will determine
how many |T ⟩ ancilia must be added to simulate a unitary.
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Definition 4.1 (T-Count). ϵ T-Count tϵ(·) is the number of T gates needed to approximate
an arbitrary unitary in terms of C = {CNOT,H, P, T} gates such that ||Kj−

∏l
i=0Ci|| ≤ ϵ

Using the improved Solovay-Kitaev algorithm [11] along with T-count, we can define a
general algorithm for simulating any unitary within stabilizer formalism.

Algorithm 1 Unitary Simulation UAPPLY(U,S)

1: Input 1: A decomposed Unitary U =
∏χ

i=0Ci

2: Input 1: A set of stabilizer tableau’s S
3: for j = 1 to χ do
4: if Cj contains a T gate then
5: Use a T-Gadget
6: else
7: Apply Cj using the associated tableau rule.
8: end if
9: end for

Algorithm 2 Unitary Simulation USIM(U)

1: Input 1: A Unitary U
2: Decompose U into

∏χ
j=1Cj = Û

3: Compute t = tϵ(U)
4: Create a circuit S with t |T ⟩ gates and a state |ψ⟩
5: UAPPLY(Û ,S)

For example for the unitary U ∈ C2×2, where U = HPT , USIM(U) would return the
following circuit

|T ⟩
0

|ψ⟩ H P

Figure 4.1: Unitary Simulation of U = HPT

4.2 Sz.-Nagy Dilation Approach

The first dilation approach will involve dilating each Kraus operator Ki ∈ ξ separately. To
do this we note that all Kraus operators are contractions lemma 4.1, and as a result they
can all be dilated using the Sz.-Nagy unitary dilation.

Lemma 4.1 (Kraus Contraction). For all Kj ∈ ξi Kj is a contraction operator

Using the fact that a operator sum representation of a noise channel is trace preserving
we know that

∑k
i=0KK

† = I. By extension we know that ⟨vK†,Kv⟩ = ||v||2 which implies
that ||Kv||2 ≤ ||v||2. Therefore by definition a Kraus operator K is a contraction which
proves lemma 4.1.
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Theorem 4.1 (Sz.-Nagy Dilation [19]). For every linear contraction operator A on a com-
plex finite-dimensional Hilbert space H, there exists a unitary dilation operator U : H⊗H →
H⊗H in the following form:

UA =

(
A

√
I −AA†√

I −A†A −A†

)
.

Using lemma 4.1 and theorem 4.1 we can design a quantum circuit that is equivalent to
K |ψ⟩, Where K̂ is the Sz.-Nagy dilation of K.

|0⟩
K̂

0

|ψ⟩

The circuit detailed above is equivalent to first computing K̂(|0⟩ ⊗ |ψ⟩) = |0⟩ ⊗K|ψ⟩+
|1⟩ ⊗

√
1−K†K|ψ⟩, and second measuring onto the 0 computational basis to retrieve com-

ponent of interest, K|ψ⟩. We can now define an algorithm that generalizes this process to
stabilizer formalism

Algorithm 3 NAGYSINGLE(K)

1: Input: A Kraus operator K
2: Dilate K → K̂
3: Decompose K̂ξi,j into

∏χ
j=1Cj

4: Compute t = tϵ(K̂)
5: Create a set of tableaux that represent a circuit S with t |T ⟩ gates, one |0⟩ ancilla,

and a state |ψ⟩
6: UAPPLY(K̂,S)
7: Apply a forced measurement onto the 0 computational basis to retrieve K1 |ψ⟩

For example, a possible call of Algorithm 3, NAGYSINGLE(K), could generate and
execute a circuit like that drawn bellow.

|0⟩
H ⊗H P ⊗H

0

|ψ⟩

|T1⟩
0

|T2⟩
0

|T3⟩
0

Figure 4.2: Circuit of Sz.-Nagy dilated Kraus K̂ = H ⊗H · T ⊗ I · P ⊗H · I ⊗ T · T ⊗ I

18



Equipped with this intuition we can now construct an algorithm that allows us to
apply multiple noise channels, instead of an individual Kraus operator. Note that the
algorithm defined bellow makes use of the quantum trajectories method since it allows us
to approximate the application of k noise channels without requiring the application of all k
noise channels in their entirety. In fact, because the Sz.-Nagy dilation is a unitary dilation for
one Kraus operator at a time, it is only natural that we make use of the quantum trajectories
method which also applies one Kraus operator at a time. The quantum trajectories approach
converges to the application of the all k noise channels in their entirety. [? ].

Algorithm 4 Sz.-Nagy’s Algorithm

1: Input 1: A list of noise channels Ξ = {ξ1, ξ2, . . . , ξk}
2: Input 2: Error for the T-Gadget compression (δ)
3: Input 3: Error for the the {CNOT,H,P,T} decomposition (ϵ)
4: Input 4: Error for the approximate inner product at line 19 (η)
5: Input 5: Error for the the final state (∆)
6: t← 0
7: for i = 1 to k do
8: for j = 1 to |ξi| do
9: Dilate Kξi,j → K̂ξi,j

10: Compute tϵ(K̂ξi,j)
11: end for
12: t← t+maxK̂ξi,j

∈ξi{tϵ(K̂ξi,j)}
13: end for
14:

15: for q = 1 to ⌈ 1
∆2 ⌉ do

16: Create a circuit S with t |T ⟩ gates, one |0⟩ ancilla, and a state |ψ⟩
17: for i = 1 to k do
18: Pick r ∈ [0, 1]
19: for j = 1 to |ξi| do
20: Copy S → S1

21: UAPPLY(K̂ξi,j,S1)
22: Retrieve Kξi,j |ψ⟩ and compute pi,j = ∥Kξi,j |ψ⟩ ∥
23: if pi,j ≤ r then
24: Set S ← S1

25: break
26: else
27: r ← r − pi,j
28: Delete S1

29: end if
30: end for
31: end for
32: Apply a forced measurement onto the 0 computational basis to retrieve a

singular quantum trajectory |Qq⟩ = Kk · · ·K2K1 |ψ⟩
33: end for
34: Take the average of all ⌈ 1

∆2 ⌉ |Qq⟩ to retrieve ξk ◦ ξk−1 ◦ ... ◦ ξ1(|ψ⟩)
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Sz.-Nagy’s Algorithm can be described as follows. We begin with k noise channels
Ξ = {ξ1, ξ2, . . . , ξk} and an initial state |ψ⟩. Next we find an upper bound for the total
number of T -gates a single quantum trajectory may require, namely we must compute
t =

∏k
i=0 Tϵ(ξi), where Tϵ(ξi) = maxK̂i,j∈ξi {tϵ(K̂i,j)}. Lastly we create a circuit S with t

T -gadgets and one ancila, which can be represented using a set of 1.17t

δ tableaus {si}
1.17t

δ
i=0

[5]. At this point we have completed instantiating our circuit, so we can begin computing a
quantum trajectory first uniformly generating a number r ∈ [0, 1]. Next we take ξ1 ∈ Ξ and
pick the first dilated Kraus operator K̂1,1. We then make a copy S1 of the set of tableaus S
and apply the Clifford + T decomposition of K̂1,1. S1 functionally serves as a playground
to test out a potential K̂ compute p1,1 = ||K̂1,1 |ψ⟩ || up to some error η using fast norm
estimation [4]. If p1,1 is ≤ r keep S1 and dispose of S. If not dispose of S1 and keep S and
r = r− p1,1. It is not guaranteed that the first Kruas operator will be choosen so we repeat
the process of computing pi,j ’s until a Kraus is chosen. Only after a Kraus operator has
been chosen for the first channel can we move onto the next channel to repeat the process
of selecting a second Kraus operator. We continue until we have chosen a Kraus operator
from each noise channel. At the end of this process we retrieve a single quantum trajectory
|Qq⟩ = Kk · · ·K2K1 |ψ⟩ through a forced measurement onto the 0 computational basis.
However in order to achieve a final state |ψ′⟩ that approximates a traditional application of
the k noise channels within some error ∆, we must compute ⌈ 1

∆2 ⌉ quantum trajectories [?
].

Theorem 4.2 (Sz.-Nagy Runtime Complexity).

O(
1

δ∆2
sn3η−21.17t)

Where s =
∏k

i=0 |ξi|, t =
∏k

i=0 Tϵ(ξi), n is the dimension of the input |ψ⟩, η is the
acceptable error of each inner product calculation, δ is the acceptable error of the T -gadget
compression, and ∆ is the acceptable error of the final solution. Where error is defined as
1− ⟨ψ|ψ′⟩2

The runtime complexity is a result of computing at most s inner products per trajectory

using fast norm estimation each of which grows at a rate of O( sn
3η−21.17t

δ ). The cost of com-
puting the Sz.-Nagy Dilation is O(sn3) which is dominated by the leading term contained
in the runtime complexity. [4]

Theorem 4.3 (Sz.-Nagy Space Complexity). The space complexity of the simulating all
⌈ 1
δ2
⌉ trajectories grows as

O(2
1.17t(t+ 2)2

8δ
)

The space complexity is a result of storing 1.17t

δ tableau’s each of which can be stored

as a binary matrix with an associated cost of (t+2)
8 bytes. Additionally at any given point

we store two copies of the set of tableau’s which doubles the space required.

4.3 Stinespring’s Dilation Approach

The second dilation approach involves embedding the entire noise channel ξ into a unitary
operator using Stinespring’s Dilation.
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Theorem 4.4 (Stinespring’s Dilation). Given a quantum error channel ξ = {K1,K2, ...Km}
we can lift the channel to a unitary of dimension 2mx2m by the following construction, where
we fill in the remaining entries using a Gram-Schmidt process such that the Kξ1 is unitary.

Kξ1 =




K1 · · · · · ·
K2 · · · ...
...

. . .
...

Km . . . . . .




Using theorem 4.4 we can design a process that is equivalent to ξk ◦ξk−1 ◦ ...◦ξ1(|ψ⟩ ⟨ψ|)
but operates within the stabilizer formalism. Take for example, the application of one
noise channels ξ1 which has size |ξ1| = 2 and has been dilated to Kξ1 . We find that

Kξ1(|0⟩ ⊗ |ψ⟩) =
(
Kξ1,1 |ψ⟩
Kξ1,2 |ψ⟩

)
= |ψ′⟩. We can then compute tr(⟨ψ′|ψ′⟩) which is equivalent

to
∑2

i Ki |ψ⟩ ⟨ψ|K†
i ρ

′. We can now generalize this one noise channel example to k noise
channels using the following algorithm.

Algorithm 5 Stinespring’s Algorithm

1: Input 1: A list of noise channels Ξ = {ξ1, ξ2, . . . , ξk}
2: t← 0
3: for i = 1 to k do
4: Dilate Kξi → K̂ξi

5: Compute tϵ(K̂ξi)

6: t← t+maxK̂ξi
∈ξi{tϵ(K̂ξi)}

7: end for
8:

9: Create a set of tableaux that represent a circuit S with t |T ⟩ gates, log2(
∑2

i=1 |ξi|)
|0⟩ ancilla, and a state |ψ⟩

10:

11: for i = 1 to k do
12: UAPPLY(I⊗i−1 ⊗Kξi ,S)
13: end for
14: Extract the final state |ψ′⟩ and compute tr(⟨ψ′|ψ′⟩) = ρ′

For example the associated circuit for applying two noise channels ξ1 and ξ2 where
tϵ(Kξ1) = 1 and tϵ(Kξ2) = 2, would be the following.

The first step of Stinespring’s Algorithms, like Sz.-Nagy’s algorithm, is to compute the
number of T gates that will be used throughout the simulation. The first major deviation
is that unlike Nagy’s algorithm where only one ancillary qubit is required, for Stinespring’s
algorithm 1 ancillary qubit is added for every noise channel. The circuit S will contain
log2(

∑2
i=1 |ξi|) ancillary |0⟩ qubits and t T-gadgets which can again be stored using 1.17t

δ
stabilizer tableau’s. Afterwords we simply apply each dilated noise channel, before finally
taking the outer product of the final state |ψ′⟩. We note that taking the outer product of
the final state |ψ′⟩ is a post-processing step that can only be computing outside of stabilizer
formalism. However we can reduce the computation burden of this step by only summing
the outer product of all 2n × 2n blocks of the output vector.
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|T ⟩

|T ⟩

|T ⟩

|0⟩

|0⟩

|ψ⟩

0

0

0

I ⊗ Kξ2

Kξ1

Figure 4.3: The application of two arbitrary noise channel onto a circuit using Stinespring’s dilation.

Theorem 4.5 (Stinespring’s Algorithm Runtime Complexity). O(n2
∏k

i=1 |ξi|+n3
∑k

i=1 |ξi|3),
where n is the qubit size of the initial state |ψ⟩

The runtime complexity is a result of the prodki=1|ξi| outer products one must take each
of which contributes a cost of n2. The final outer product computation is the most expensive
portion of the algorithm, however we do note that computing the stein springs dilation’s
requires a Gram-Schmit which contributes a cost of n3

∑k
i=1 |ξi|3

Theorem 4.6 (Stinespring’s Algorithm Space Complexity). O( (1+log2(s)+t)21.17t

8δ ), where

s =
∏k

i=1 |ξi|, n is the qubit size of the initial state |ψ⟩, t =
∑k

i=1 tϵ(Kxi), and δ is the
acceptable error of the T -gadget compression.

The space complexity is similar to that of Sz.-Nagy’s algorithm, with the only change
being that each tableau has dimension (1 + log2(s) + t) instead of (2 + t).

4.4 Examples

Next we investigate how many noise channels can be reasonably simulated using both di-
lation approaches. We take amplitude dampening channel as a case study since its one of
the few frequently used non-Clifford 1-qubit noise channels.

Definition 4.2 (Amplitude Dampening Channel). ξAD =

{
K1 =

[
1 0
0
√
1− p

]
,K2 =

[
0
√
p

0 0

]}

From the space complexity of both Nagy and Stinespring’s algorithms we know that
the T-count is the driving factor in memory consumption. As a result our first step is
minimizing the t-count in order to best estimate how many ξAD channels a user could
apply. To do this we first note that K2 is a projector so an equivalent process to applying
K2 is first applying an X gate then applying a forced projective measurement of 0. In other
words K |ψ⟩ = P|0⟩X |ψ⟩ is a T gate free operation. Therefore we can focus our efforts
on quantifying the T-Count of K1. The Sz.-Nagy dilated form of K1 can be recast as the
following circuit.
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H H S H H† S† H†

H Rz(θ) H S H Rz(θ) H† S† H†

Figure 4.5: Stinespring Dilated Amplitude Dampening Circuit Equivalence

Z S† H Rz(−θ) H† S S† H Rz(−θ) H† S

Figure 4.4: Sz.-Nagy Dilated Amplitude Dampening Circuit Equivalence

The Stinespring dilation of ξAD can also be recast as the following circuit through a few
manipulations. Both circuit derivations are detailed in Appendix A.

We can observe that most of our T-Cost comes from the 2 Rz gates in both the Sz.-
Nagy and Stinespring dilated unitaries. Luckily we know that the approximate t-cost is a
function of how precise we want our p to be. For example a p = .01 would require 3 T
gates per Rz gate, while a p = .1 would require 2 T gates per Rz gate [12]. Using these T
count estimates for both the Sz.-Nagy and Stinespring algorithms we find that a user could
reasonably apply 10-15 noise channels on a 16GB of memory.
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Chapter 5

K-gadgets and Compression

The dilation methods are versatile in that they can simulate all combinations of Kraus oper-
ators. However, some quantum systems may experience the same type of noise repeatedly.
In systems like these, rather than converting Kraus operators into unitary matrices and
decomposing them into sequences of C,H,P and T gates, perhaps one can apply a K-gadget
similar to what was done by Bravyi and Gosset [5]. The previous Chapter noted how the
T-cost of even simple amplitude dampening channels could reach up to four per Kraus
operator. The main benefit of using a K-gadget method is that instead of requiring four
T-gadgets, we would only need a single K-gadget per Kraus operator.

Lemma 5.1. Operating under the same gadget construction as the T-gadget, one can com-

press diagonal matrices K1 =

(
a 0
0 b

)
and off-diagonal matrices K2 =

(
0 c
d 0

)
with corre-

sponding magic states m1 =

(
a
b

)
and m2 =

(
c
d

)
. The corresponding gadgets are noted in

the appendix, and are easy to verify.

Moreover, both of these magic states can be written as a linear combination of two
stabilizer states as the stabilizer states form a basis over C2 and C2 is dimension 2 over
C. Thus, any Kraus operator which is either diagonal or off-diagonal has a corresponding

magic state |M⟩ = |0̃⟩+|1̃⟩
c where |0̃⟩ = |f⟩ and |1̃⟩ = α |g⟩, for any linearly independent

pair of stabilizers |f⟩ and |g⟩ and some normalization constant c. For example, the Kraus

channel

(
1 0

0
√
32

)
, corresponding to the amplitude dampening channel with parameter

p = 0.5, has the corresponding magic state |M⟩ =
(

1√
3
2

)
. This magic state can be written

as a linear combination of |0⟩ and |+⟩ where |M⟩ = (1 −
√
3
2 ) |0⟩ + (

√
6
2 ) |+⟩ = |+⟩+ 2−

√
3√

6
|0⟩

2
√

6
6

,

where α =
(2−

√
3)√

6
≈ 0.1. Notice that this parameterization of |M⟩ in terms of α and two

stabilizer states is really just a generalization of the |H⟩-state, with the |H⟩-state being the
result for α = 1 and two specific stabilizer states. Like Bravyi and Gosset’s method, we
aim to find an efficient decomposition of:

|L⟩⊗t =
1√
K(L)

∑

x∈L
|x̃1...x̃t⟩ =

1√
K(L)

∑

x∈L
α|x| |x1x2...xt⟩
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Where K(L) = ∑
x,y∈L ν

|x+y|α|x|+|y|, with ν = ⟨f |g⟩. We similarly define an approxi-
mation corresponding to a subspace L with:

|L⟩ = 1√
K(L)

∑

x∈L
|x̃1...x̃t⟩ =

1√
K(L)

∑

x∈L
α|x| |x1x2...xt⟩

We use the same error function, and we can see that:

⟨M⊗t|L⟩ = 1√
K(F1

2)
tK(L)

∑

x∈Ft
2,y∈L

α|x|+|y|ν|x+y| (5.1)

Rather than summing over all x ∈ Ft
2, we can sum over all possible values of |x + y|,

ranging from 0 to t. For any given y, the number of terms where |x + y| = i is

equal to
∑i

j=0

(
|y|
j

)(
t− |y|
j − i

)
where j is the number of one-bits that are flipped. Thus,

(
|y|
j

)(
t− |y|
j − i

)
counts the number of x terms which are j 1-bit-flips and i − j 0-bit-flips

away from y. Thus, using some combinatorics, we can simplify Equation 5.1 to the following
expression:

⟨M⊗t|L⟩ = 1√
K(F1

2)
tK(L)

∑

y∈L

t∑

i=0

α2|y|νi
i∑

j=0

1

α2j−i

(
|y|
j

)(
t− |y|
j − i

)
(5.2)

The reason why we care about this error function is because it is significantly easier to
calculate, as rather than iterating over all bitstrings in Ft

2, one only needs to iterate over
the terms in L, which is a subspace significantly smaller than Ft

2. Using this inner product
formula, we ran several simulations to test how much we could compress |M⟩⊗t, as well has
what the error would be relative to each compression rate.

Figure 5.1: Caption: Minimum error across 1000 samples of subspaces across different dimensions.
|M⟩ has α = 0.5.

In figure 5.1 we sampled 1000 subspaces of Ft
2 with various for each dimension ranging

from 5 through 9 and we plotted the minimum estimation error across the 1000 samples
for each dimension. Notice using a 7-dimensional subspace, one can expect to achieve error
below 0.01 across 1000 samples using a dimension seven subspace. For comparison, the
method used in Bravyi and Gosset’s paper only suggests a dimension nine decomposition.
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The figure indicates that such magic states can be indeed be compressed, and that the true
compression rate is lower than what is indicated in [5] for small t values.

Figure 5.2: Number of samples required to achieve subspace with specific error values

Moreover, the number of samples actually required to find a seven dimensional subspace
with corresponding approximation error less than 0.01 is actually quite small as well. Figure
5.2 shows the number of samples required to achieve a dimension 7 subspace with error less
than a specific delta when approximating |M⟩⊗t. This is shown in comparison to the
expected number of samples needed to approximate |H⟩⊗t using the T-state compression
method. Figure 5.2 show that the expected number of samples to achieve any given error
is actually fewer in the K-gadget case when α = 0.5 than the T-gadget case where α is
effectively equal to 1.

Figures 5.1 and 5.2 indicate that magic states with α = 0.5 can also be compressed
more efficiently than the bounds found in [5], and that sampling a sufficiently accurate
approximation would require fewer samples than expected in the α = 1 case.

Figure 5.3: Minimum error across 250 samples for various α values and subspace dimensions.

Figure 5.3 shows the minimum error in approximating |M⟩⊗10 across 250 samples, while
varying the dimensions sampled and the α values that make up |M⟩. Indeed, the error
monotonically decreases as the dimension of the approximation increases. However, the
error does not monotonically increase as α increases.
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Figure 5.4: Approximations error across different k and α-values.

Figure 5.4 is the result of figure 5.3 when viewed from a particular angle. The figure
shows thats that the gradient of the error with respect to the dimension differs for different
values of α. In fact, the magnitude of the gradient increases as α increases, indicating that
larger values for α benefit more from having higher rank than smaller values of α. The plot
also indicates that magic states written with higher values of α can achieve overall lower
levels of error than magic states with lower values of α.

The research on K-gadgets is still ongoing and there are many open questions that we
have yet to answer. Our goal with K-gadgets is to find a similar bound to the bound provided
in the T-gadget compression method, which would inform what subspaces to look over for
lower rank compositions, as well as an the order of the expecterd number of samples required
to find a subspace with sufficiently low error. We are also interested in how changing the
two stabilizer states which compose |M⟩ would affect the compression rate or the sampling
process.
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Chapter 6

Conclusion and Discussion

We end with a brief comparison and discussion of the four methods proposed throughout
this report. Note that the Clifford decomposition approach is intentionally omitted since
the O(2k) space complexity allowed us to rule out this approach early on in our research. the
complexity analysis of the K-gadget approach is a rough estimate based on the numerical
simulations listed in section 5.

Name Runtime Complexity Space Complexity # of Noise Channels

Sz.-Nagy O( 1
δ∆2 sn

3η−21.17t) O(21.17t(t+2)2

8δ
) 10-15

Stinespring O(n2
∏k

i=1 |ξi|+ n3
∑k

i=1 |ξi|3) O( (1+log2(s)+t)21.17t

8δ
) 10-15

K-Gadget O(|Ξ| · |ξ|) O( (k+1)2(1+0.2α)k

8δ
) 57-11,312

Table 6.1: Comparison of Algorithms. Number of noise channels is computed given a 16GB limit in
memory. For Sz.-Nagy and Stinespring the range is a result of varying precision of the noise and for
the K-gadget approach the range is a result of varying α from 1 to 0

Simulating Quantum circuits is a computationally difficult problem, and the stabilizer
formalism provides one of many possible routes to classical simulation. The stabilizer for-
malism is quite restrictive, only allowing a small set of unitary operators to be simulated
efficiently. Furthermore, simulating non-unitary noise channels within the stabilizer formal-
ism is a difficult problem as it does not natively support them. We have provided two main
methods for implementing them.

The two dilation methods allow us to lift our Kraus operator or noise channel to a higher
Hilbert space such that the lifted operator is unitary, and apply that unitary matrix to our
stabilizer formalism using Clifford + T decomposition and applying Bravyi and Gosset’s
work. The Stinespring’s approach allows us to simulate the whole channel with the high up-
front computational cost of using the Gram Schmidt process to create our unitary matrices.
It remains an open question whether there are more computationally friendly approaches
to this process. The post-processing cost of converting the output to OSR is also a hefty
computation, requiring

∏k
i=1 |ξi| outer products. Comparatively, the Sz.- Nagy approach

incurs more cost during the runtime of the circuit itself, requiring the use of quantum
trajectories. Namely, the requirement of applying the Kraus operator K to the current
state to find it’s respective probability is the largest contributer to the algorithm’s runtime

It should be noted that the K-gadgets method allows us to simulate diagonal and off-
diagonal matrices with reasonable runtime. This means that we are not restricted to opera-
tors that satisfy the noise channel requirement

∑
KK† = I, but this method can be applied

to any diagonal and off-diagonal matrix. As is explained in Appendix A, this can also work
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for arbitrary 2 × 2 operators, but with an exponential cost of 2k where is the number of
operators applied. It remains an open question what other methods can be employed to
more efficiently simulate these arbitrary operators.
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Appendix A

Circuit Equivalences

A.1 Circuit Derivations For Section 3.4

First and foremost we’d like to thank Namit Anand for proposing the application of Match-
gates to solve this problem for Sz.-Nagy dilation and for solving this problem for the Stine-
spring dilation case.

A.1.1 Amplitude Dampening Circuit for Sz.Nagy Dilation

The goal will be to get approximate minimal T-Counts of the amplitude dampening channel
using Sz. Nagy Dilation and Matchgates. Where the amplitude dampening channel is
defined as follows

ξAD =

{
K1 =

[
1 0
0
√
1− p

]
,K2 =

[
0
√
p

0 0

]}

We will focus our attention onK1, whose Sz.-Nagy dilation is the following, when p = sin2( θ2)

K̂θ =




1 0 0 0

0 cos( θ2) 0 sin( θ2)
0 0 −1 0

0 sin( θ2) 0 − cos( θ2)




We can show that CNOT K̂θ CNOT recovers a Givens rotation

CNOT K̂θ CNOT = GAB(θ) =




1 0 0 0

0 cos( θ2) sin( θ2) 0

0 sin( θ2) − cos( θ2) 0
0 0 0 −1




In other words these two circuits are identical

K̂θ ĜAB

Ramelow established some useful circuit identities for Givens rotations which we use to
rewrite GAB as the following circuit [17]
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Z Ry(
θ
2) Ry(

−θ
2 )

Using the identity that Ry(θ) can be rewritten as Ry(θ) = S†HRz(−θ)H†S, we can
again rewrite the following circuit equality

K̂θ

=

Z S† H Rz(−θ) H† S S† H Rz(−θ) H† S

A.1.2 Amplitude Dampening Circuit for Stinespring’s Dila-
tion

The Stinespring dilation for ξAD gives us the following unitary matrix if we parameterize
p = sin2(θ/2)

G(θ) =




1 0 0 0
0 cos(θ/2) − sin(θ/2) 0
0 sin(θ/2) cos(θ/2) 0
0 0 0 1




This is known as a Givens rotation. It is easy to check that:

G(θ) = exp [−iθ/2(Y ⊗X −X ⊗ Y )]

To find an optimal Clifford+T decomposition of this gate, we use the following obser-
vations. First, recall that the iSWAP gate is a Clifford unitary defined as:

iSWAP =




1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1




We can parameterize this gate as the following equality and can recover the above gate
for θ = π.

iSWAP(θ) = exp [iθ/2(X ⊗X + Y ⊗ Y )]

The first claim is that:

G(θ) = (T−1 ⊗ T ) · iSWAP(θ) · (T ⊗ T−1)

This tells us how to generate the Givens rotation using T-gates and iSWAP gates. Now,
using the fact that [X ⊗X,Y ⊗ Y ] = 0, we can simplify the iSWAP gate as:

iSWAP(θ) = exp [iθ/2(X ⊗X)] · exp [iθ/2(Y ⊗ Y )]
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Moreover, using the following two identities:

HZH† = X and (HSH)Z(HSH)† = −Y

exp [iθ/2(Z ⊗ Z)] = CNOT · (I ⊗Rz(θ)) · CNOT

we can write the iSWAP gate as the following circuit

iSWAP(θ) = H⊗2·CNOT·(I⊗Rz(θ))·CNOT·H†⊗2·(HSH)⊗2·CNOT·(I⊗Rz(θ))·CNOT·(HSH)†⊗2

H H S H H† S† H†

H Rz(θ) H S H Rz(θ) H† S† H†

A.2 K-gadgets

Utilizing the fact that we can force a measurement in the Z basis to be |0⟩, we create a gadget
that can apply a Kraus operator to a state |ψ⟩. Let K =

[
a 0
0 b

]
. Then the gadgetized K

is |K⟩ =
[
a
b

]
. Then to apply the diagonal Kraus operator, we apply the following circuit:

|ψ⟩

|K⟩
0

Which produces K |ψ⟩. A similar circuit works for the diagonal matrix K =

[
0 a
b 0

]
.

Let |K⟩ =
[
b
a

]
. Then

X

|ψ⟩

|K⟩
0

gives you K |ψ⟩.
Note that you can also simulate any Kraus operator K =

[
a b
c d

]
by decomposing it

into the sum of the diagonal components and the off-diagonal components. However, it has
scaling similar to Clifford decomp of rank 2, that is, it scales as 2k where k is the number
of applied Kraus operators.
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I. INTRODUCTION

The process through which multi-celled organisms make
decisions is immeasurably complex and the set of possible
actions the organism can take is infinite. This level of complex-
ity makes modeling behavior incredibly difficult, which leaves
researchers capable of only developing behavioral models that
serve as heuristics for what an organism may do. So with this
in mind we aim to answer the question; Is there an organism
that still exhibits signs of complex decision making, but
whose decision making process can be accurately modeled?
To answer this question we move away from multi-celled
organism and examine a single celled cilliate called Stentor
Roeselli.

In 1906, Biologist Herbert Spencer Jennings reported that
Stentor Roeselli exhibited signs of complex behavior, poten-
tially indicating a form of decision making [6]. Jennings’
work seemed to indicate that the protist was capable of
choosing from a set of possible actions and that the choice
was dependent on past experiences. Later in 2019 Dexter et
al. [2] verified Jennings’ experiment by carefully documenting
the behavior of Stentor Roeselli within a dataset that is now
publicly available and concluded that the protist was exhibiting
some sort of structured decision making.

Using the Jenning’s and Dexter’s findings, researchers have
sought to develop learning models capable of replicating the
behavior of the protist. For example in 1969 Wood verified
that the sort of primitive learning like that exhibited by Stentor
Roeslii was possible [18]. Additionally researchers have veri-
fied that the behavior of single celled organisms, like Stentor
Roeslli partially satisfy tenants of complex decision making
models such as associative learning frameworks, although such
frameworks have been shown to be incomplete descriptions of
the protist’s behavior [5], [14]. Other approaches in literature
have focused on behavioral models that grade each decision
Stentor Roseli can make based on its respective cost and utility.
For example Staddon grades potential decisions of the Stentor
Roeselii via the the energy required along with the opportunity
cost associated with carrying out the decision [15].

While some have focused on qualitative behavioral theories,
other have applied quantitative machine learning models like
decision trees, random forrests and artificial feed forward
neural networks to the problem. However each of these models
were ineffective in fully capturing the behavior measured in

Dexter’s experiments, with the best modeling producing an
accuracy of roughly 59% [17]. As a result Trinh et al. conclude
that Stentor Roseli’s decision making process ”cannot be fully
explained by habituation, sensitization or operand behaviour”
[17]. They go onto claim that while, machine learning models
and other established learning models are able to capture an
impressive amount of behavioral features of more complex life
forms [12], they have been largely unsuccessful in modeling
single celled decision making.

So in an effort to develop a faithful model and intro-
duce a new tool to the body of literature on this problem,
we will motivate then propose a novel quantum informatics
framework for modeling the protist’s behavior that aims to
computationally replicate Dexter’s statistical findings. To do
this we will first analyze Stentor’s Roseli’s behavior, next we
will motive the application of quantum information theory,
before finally proposing a quantum behavioral model along
with implementation techniques from the field of classical
quantum simulation.

II. BEHAVIOR OF STENTOR ROESELI

In this section we will describe the behavior of Stentor
Roeselii along with the tools it has at its disposal to carry out
those decision. First we note that the Stentor Roeselii contains
is relatively large (up to 1200 micrometers), trumpet shaped,
and covered with rows of cilia that help it move and feed by
sweeping food into its cystostome [13].

Now that we’ve briefly covered the taxonomy of the Stentor
Roeselli we move onto the behavioral observations made by
Jennings and later verified or amended by Dexter [6], [2].
Jennings reported a hierarchy of behaviors that the protist
exhibited when exposed to an irritant or toxin. We list the
possible actions in the same order Jennings reported they
would occur; resting (R), bending away (B), ciliary alteration
(A), contraction (C), and detachment from the surface (D).
They conclude that their is strong statistical evidence that the
Stentor Roeselli follows a behavioral hierarchy. However they
note that the hierarchy was rarely observed in full and that
they instead observed many partial instances of the hierarchy
with cases of the protist skipping steps in the hierarchy. The
one exception to the skipping phenomenon is that detachment
(D) is always the last action exhibited. We note that (A/B) are
low energy actions, while (C) and (D) require more energy to
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Fig. 1. Drawing of S. coeruleus showing principal features [16], largely
shared with S. roeseli

enact. This suggests that the hierarchy observed is in line with
optimal foraging theory, which posits that organisms evolve to
minimize energy expenditure while maximizing the inflow of
energy [11].

Fig. 2. Drawing of the observed behaviors of the Stentor Roeselii. [6]

Fig. 3. An observed sequence of behaviors [2]

A. Statistical Analysis

As previously stated Dexter’s experimental results are pub-
licly available, so we will spend some mining their dataset for
insights that can help inform the structure of a model of Sentor
Roeselli’s behavior. Dexter’s dataset is formatted as a set of
sequences formed by A,B,C,D and are separated by pluses (p)
which are instances where the researchers manually injected a
toxin into the environment. For example a sequence could look
like ”ABpACCpCCCD” or ”CpCCD”. Given the structure of
the data we define inter-sequence and intra-sequence Where
inter-sequence trends deal with the protist’s decision making

up until the toxin is eliminated then reintroduced using a pulse.
Intra-sequence trends deal with how decision making changes
across multiple interact

First we cover the inter-sequence trends. Its simple to
observe in Dexter’s data that (A/B) never follows (C) ex-
cept for two samples which Dexter attributes to accidental
pulses. In other words once a series of contraction begins
the protist will only return to a rest state after a detachment
or a successful contraction that eliminates the toxin. Dexter
observed that that when the protist contracts (C) there is a 50%
chance that the contraction will be followed by a detachment
(D), and that the probability of remaining attached after k
consecutive contraction is 1

2k
. This indicates that the decision

to detach (D) post contraction was tantamount to a coin flip.
While it might be tempting to claim that the spontaneity of
detachment is evidence against learning we find that the 50%
probability of detaching post contraction can be attributed
the 50% probability that (C) is successful in eliminating the
toxin. Specifically, through an analysis of Dexter’s dataset we
note that the (A/B) had a success rate of approximately 10%,
(C) was successful around 50% of the time and (D) had a
100% success rate. These results indicate that first the cheaper
(A/B) actions were less effective in eliminating the toxin from
the protist’s environment and second that the contraction is
successful at the same rate as a coin flip.

Next we move onto intra-sequence trends. Dexter’s exper-
iments indicate that that (A) and (B) often occurred together
and as result can be treated as a single action (A or/and B).
Using this notational adjustment we note that the first action
taken by a protist with no ”experience” of interacting with
toxins is (A/B).Additionaly dexter notes that all 44 instances of
(D) were directly preceded by (C) and that in 30/44 instances
(D) was preceded by (A or/and B). This means that in roughly
30% of cases the (A/B) action was skipped entirely. We note
that this corresponds with the 30% conditional probability that
(A/B) is reapplied given that (A/B) failed to remove the toxin
in the protist’s most recent interaction with the toxin. This
seems to indicate that protist ”learned” that the (A or/and
B) response was not sufficient to eliminate the toxin and
as a result will opt for the more energy intensive option of
contracting (C) immediately after the second encounter with
the toxin [7].

III. QUANTUM INFLUENCE

Based on the statistical analysis described above both Dexter
and Jennings conclude that the Stentor Roselii possesses the
capacity for hierarchical decision making. In 2009 Bray argues
in his book titled ”Wetware: A Computer in Every Living
Cell” that this sort of hierarchical decision could be explained
by biochemical pathways that act like logic circuits or neural
networks [1].

However the failure of previous machine learning based
models [17] to capture the behavior of Stentor Roselii implies
that the protist’s behavior cannot be fully explained through
simple digital circuits. In fact the statistical analysis described
above indicates that the protist’s behavior is laden with certain
amount of noise and uncertainty. Take for example the decision
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to detach (D) after a contraction (C). This choice follows can
be modeled as a memory less random variable, in other words
the protists flips a coin repeatedly until a head appears and
only then does it detach.

Bray even concedes that the key difference between elec-
tronic and biological circuits is that cellular circuitry is noisy
and its outcomes can be difficult to predict. However its these
very features that support the claim that biological systems
are more inline with quantum logic then digital logic. Since
the outputs of quantum circuits suffer from noise and are
at their core probabilistic. In fact the claim that quantum
mechanical phenomena play a nontrivial role in biology has
been verified within several biological mechanisms such as
light harvesting in photosynthesis, vision, olfactory sensing,
and magnetroception [4]. So we claim that the behavior of
stentor roselii is best described not by a neural networks
or other deterministic and digital imitations of biological
wetware, but instead through quantum wetware. Before we
begin designing a quantum simulator for S.Roselii we will
briefly introduce quantum computing.

IV. QUANTUM COMPUTING BACKGROUND

In quantum computing, the fundamental unit of information
is the qubit, which is a two-level quantum system. A qubit can
exist in a superposition of the basis states |0⟩ and |1⟩, and its
general state is described by a linear combination:

|ψ⟩ = α |0⟩+ β |1⟩

where α and β are complex numbers known as probability
amplitudes. The squared magnitudes of these amplitudes rep-
resent the probabilities of measuring the qubit in the respective
states:

P (0) = |α|2, P (1) = |β|2

Since these probabilities must sum to 1, the norm of the
state vector must also be 1. This leads to the normalization
condition:

|α|2 + |β|2 = 1

Before a moving on from 1-qubit systems we note that an
important state we will make frequent use of. The |+⟩ state
represents a superposition of |0⟩ and |1⟩ where the probability
of measuring either basis is equal.

|+⟩ = 1√
2

(
1 1

)

For a system of n qubits, the state space is the tensor product
of n single-qubit state spaces. This allows us to represent
multi-qubit states in the form of tensor products of individual
qubits. Speficially the state of an n-qubit system is an element
of the 2n-dimensional Hilbert space, H = (C2)⊗n. If we have
a set of single-qubit states |ψ1⟩, |ψ2⟩, . . . , |ψn⟩, the overall
state of the n-qubit system is given by the tensor product:

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩

Quantum evolution is governed by unitary operations, which
are linear transformations that preserve the norm of quantum
states. A matrix U is unitary if it satisfies:

U†U = UU† = I

where U† is the conjugate transpose of U and I is the
identity matrix. Unitaries ensure that the evolution of the qubit
preserves the normalization condition, which maintains valid
probability distributions for measurement outcomes. In fact the
group unitary matrices form a complete gate set, which measn
that there always exists a unitary that can map one arbitrary
qubit to another [8]. Specifically we can construct a unitary
U|ψ̂⟩ : |ψ⟩ →

∣∣∣ψ̂
〉

as follows.

U|ψ̂⟩(|ψ⟩) = |ψ⟩⟨ψ̂|+ |ψ
⊥⟩⟨ψ̂⊥|

These unitary transformations are fundamental in quantum
algorithms, as they allow controlled and reversible evolution of
quantum states, without violating the probabilistic interpreta-
tion of quantum mechanics. Quantum circuits provide a graph-
ical method of describing quantum algorithms. Each qubit is
represented by a horizontal line, and operations on qubits are
represented by gates applied along this line. Each quantum
gate corresponds to a unitary operation, and the sequence of
gates in a circuit defines the overall unitary transformation
applied to the system. For example the controlled X gate, often
called the CNOT gate, introduces entanglement between two
qubits. If the control qubit is |1⟩, the target qubit is flipped.
The circuit below shows the application of a CNOT gate to
two qubits:

|1⟩ |0⟩

|0⟩ X |1⟩
=
|1⟩ |0⟩

|0⟩ |1⟩

This concept of controlled unitaries can be expanded from
the CNOT gate to arbitrary unitaries

In a quantum circuit we can also classically control qubits.
For example if |0⟩ is measured we can classically apply the X
gate with a set probability po by classically sampling from a
uniform distribution. We will represent classical control using
the double wire.

Xpo

Next we describe the measurement process. The measure-
ment process is the process of extracting classical information
from a quantum circuit. We do this by projecting the state
down to an element in the computational basis with a proba-
bility corresponding to the square of that element’s amplitude.
This process is known as the Born rule [8]. For example the
standard computational basis of a two qubit state would be
the outcomes |00⟩, |01⟩, |10⟩, |11⟩, where the square root of
the corresponding probabilities are exactly the first, second,
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third and fourth entries respectively in the 2-qubit state vector
|ψ⟩ ∈ R4. A measurment is typically described graphically
using the following icon.

V. PROPOSED QUANTUM BEHAVIORAL MODEL

In this section we describe a iterative quantum circuit that
captures the Stentor Roselii’s behavior. First we introduce a 2
qubit state vector |ψ⟩ where the measurement outcome |11⟩ is
the the (A/B) action, |10⟩ is contraction (C), |01⟩ is detachment
(D), |00⟩ is the resting state |00⟩. We could represent |ψ⟩ as the
tensor product of two qubit |ψ1⟩⊗|ψ2⟩ or as 4×1 vector where
r, c, ab, d correspond with the square root of the probability
that the protist will choose to rest (R), contract (C), deploy
the (A/B) action, or detach (D) repsectivly.

|ψ⟩ =




r
d
c
ab


 = |ψ1⟩ ⊗ |ψ2⟩

Second we introduce a toxin qubit |p⟩ which is |1⟩ when a
toxin is present and |0⟩ when there is no toxin detected. We
note that |p⟩ is functionally a digital bits in that it will only
ever take on a zero or one value. We also introduce a memory
qubit |m⟩ which allows the protist to store its previous action.
Specifically if |m⟩ = |0⟩ the previous action was (A/B), if
|m⟩ = |1⟩ the previous action was (C) or (D) and if there
was no previous action then |m⟩ = |+⟩ since neither (A/B) or
(C/D) has taken place. So the full state of the protist, which
contains the internal state qubits and environmental data qubits
can be written as |ψ⟩ ⊗ |m⟩ ⊗ |p⟩. For example assuming the
|p⟩ is initially set to |0⟩ (no toxin) we can describe a protist
who has just detected a toxin using the following circuit.

|ψ⟩
|m⟩

|p⟩ X

where X is the Pauli X gate, which flips the qubit its applied
to and in this case ”turns on” the toxin bit [8].

X =

(
0 1
1 0

)
(1)

Next we describe the mechanism through which the protist
adjusts the probability of an action based on the state of
|p⟩. In quantum circuits the process of increasing or decreas-
ing the probabilities of certain outcomes can be replicated
through amplitude dampening, a rotation based mechanism
which decreases the probability of a certain outcome using
quantum gates. We will use amplitude dampening to adjust the
inter-sequence and intra-sequence statistics of the protist. For
example given that the |ψ⟩ =

(
0, 1, 0, 0

)
, which would indicate

that the protist will definitively choose (A/B) as its next action,

one could decrease the probability of choosing (A/B) after a
failed application using a Givens Rotation G1,2(θ). θ would
represent the inter-sequence learning rate, or how quickly the
protist changes its preference between (A/B) and (C).

GAB,C(θ) =




1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ


 (2)

We also define a controlled G gate which outlines the
various adjustments a protist can make. First if the previous
action was an unsuccessful (A/B) then the protist decreases
the probability of choosing (A/B) again and increase the
probability of choosing (C). On the other hand if the last
action was an unsuccessful (C) then the protist maps |ψ⟩
to |t⟩ = 1√

2

(
0 1 1 0

)
for two reasons. First after the

protist chooses a contraction the probability of returning to
(A/B) before the end of the sequence drops to 0 and second it
represents the 50/50 chance, which Dexter observed, that (C)
is reapplied or the protist detaches (D).

G(|m⟩ , |p⟩) =





GAB,C(θ), if |m⟩ = |0⟩ and |p⟩ = |1⟩
U|t⟩(|ψ⟩), if |m⟩ = |1⟩ and |p⟩ = |1⟩
U|00⟩(|ψ⟩), if |p⟩ = |0⟩

Using these tools we can begin to piece together a a quan-
tum circuit that reflects the behavior of the Stentor Roselii.
We begin by setting the initial state of the system to |00 + 0⟩,
which represents a resting state with no toxins detected and
no recorded last action. In order to simulate the presence of
a toxin we apply X ⊗ X ⊗ I ⊗ X which flips the toxin bit,
guarantees a first response of (A/B), and yields the following
state |11 + 1⟩. We set the probability of (A/B) to 1 since this is
the default starting action for a protist as observed in Dexter’s
experimental data. Next we measure the the first two qubits
of the circuit |ψ⟩ and find that the |ψ⟩ has collapsed to |11⟩
and the protist has chosen (A/B). Based on that response we
record the last action in |m⟩ using the following gate.

M =





U|+⟩(|m⟩), if the measurement outcome is |00⟩
U|0⟩(|m⟩), if the measurement outcome is |11⟩
U|1⟩(|m⟩), if the measurement outcome is |10⟩ or |01⟩

In this case the measurement outcome is |11⟩, which cor-
responds to the (A/B) action and will classically trigger a
Xp̂ gate applied to |p⟩ at a probability p̂. Where p̂ in this
case is 0.10 as observed in Dexter’s dataset, but in general
can be determined by the following function. Notice that the
probability of switching off the toxin bit is 0 when the protist
is at rest.

p̂ =





0, if the measurement outcome is |00⟩
0.10, if the measurement outcome is |11⟩
0.50, if the measurement outcome is |10⟩ or |01⟩

Next we measure the toxin qubit |p⟩ to determine whether
or not the action was successful. If the action was successful
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and |p⟩ = |0⟩ then we apply G1 ← U|00⟩(|ψ⟩) which returns
the protist to a resting state. This process can be represented
using the following quantum circuit.

|ψ⟩ X G1

|m⟩ M

|p⟩ X Xp̂

A1

Now assume that we measure |p⟩ = |1⟩, then we conclude
that the previous action was unsuccessful in eliminating the
toxin. So the protist measures |m⟩ and determines that the last
action was (A/B) which prompts it to decrease the probability
of choosing (A/B) using G1 ← GAB,C(θ) with some inter-
sequence learning rate θ. The state is then measured again
to determine the next action. This process continues until the
toxin is removed, which would require the measurement of |p⟩
to return |0⟩, or the measurement of |ψ⟩ to return |10⟩ which
corresponds with the (C) action. Assuming we measure |ψ⟩
to be |10⟩ (C) on the nth iteration we classically trigger an
Xp̂ gate applied to |p⟩ at a probability of p̂ = 0.50. If the
toxin remains then we apply Gn ← U|t⟩(|ψ⟩) which sets the
probability of choosing (C) to the statistically predicted rate of
1
2 . We repeat this process and continue to to apply U|t⟩(|ψ⟩)
which decreases the probability of (C) to 1√

2
k after k failed

(C) applications until detachment (D) is triggered which flips
|p⟩. In other words the toxin is eliminated and the sequence
terminates.

We can describe this process using the following circuit
where a measurement with the superscript (C) represents the
first measurement where (C) is chosen.

|ψ⟩ X G1

|m⟩ M

|p⟩ X Xp̂

A1

. . .

(C)

Gn

M

Xp̂

An
While the sequence itself has terminated the protist will use

the sequence to inform future decisions. Recall the statistical
analysis which showed that in 70% of cases where (D) was
not preceded by (A or/and B) the protist had already tried
and failed to apply the (A or/and B) response to an earlier
interaction with the toxin. This indicated that upon a failed
application of (A/B), the probability that the protist chooses
(A/B) as a first response in the next interaction with a toxin

decreases to 30% while the probability of (C) increases to
70%. Therefor once the protist terminates the sequence and
begins an interaction with another toxin we allow the protist to
access it’s memory and adjust its bias towards one decision or
another. For example if the sequence terminates with the action
some action in {AB,C,D} with the corresponding state |m⟩
we adjust |ψ⟩ using the following function R where |c⟩ =(√

0.3
√
.7
)

and |ab⟩ =
(√

0.7
√
.3
)
.

R(|m⟩) =





U|c⟩|ψ⟩, if |m⟩ = |1⟩ and |p⟩ = |0⟩
U|ab⟩|ψ⟩, if |m⟩ = |0⟩ and |p⟩ = |0⟩
X ⊗X, if |m⟩ = |+⟩ and |p⟩ = |0⟩
I ⊗ I, if |p⟩ = |1⟩

For example assume that |p⟩ is measured to be |0⟩ on the
nth iteration. In that case Gn ← U|00⟩(|ψ⟩) which sends the
protist to a resting state. Once the toxin is detected again,
which would entail manutally applying an X gate to |p⟩ the
protist adjusts it’s decision bias by applying R to |ψ⟩ before
proceeding with the rest of the sequence.

Gn R

X

Bn

Notice that a full sequence, from the detection of a toxin to
termination, can now be described compactly as the following
circuit where {ki} is the set of iterations at which a sequence
terminates. We note that an application of B is a user-level
decision, and that this is very similar to Dexter’s experimental
setup where the researchers deliver toxins into an environment
manually through the introduction of microbeads [2]. We also
note that once the first sequence is over we can apply Bk+1

and {Ai}k2i=k1+1, and so on and so forth.

|ψ⟩
B1 A1|m⟩

|p⟩

. . . Ak1

A. Depth Analysis

A natural question to ask at this point is what the expected
length of each sequence given an initial state. First we let
the random variable N be the number of iterations until
termination. Second we note that the length of each sequence
depends on the evolution of the probabilities of the (A/B)
and (C) actions. So we let the state at the beginning of the
sequence be |ψ0⟩ ∈ R2, where ψ1, ψ2 are the probabilities of
the (A/B) and (C) action respectively. We solve this problem
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for an arbitrary |ψ0⟩ and find E[N | |ψ0⟩]. We note that this
expectation can be broken up into an expectation of NAB
which is the number of iterations before (C) is first chosen
or an (A/B) action results in removal of the toxins, and NC
which is the number of iterations before (D) is first chosen or
(C) results in removal of the toxins.

E[N | |ψ0⟩] = E[NAB | |ψ0⟩] + E[NC | |ψ0⟩]
We observe that E[NC | |ψ0⟩] = 2 since its geometrically

distributed with probability 1/2 and we proceed to the cal-
culation of E[NAB | |ψ0⟩]. For this computation we introduce
the ABn ∈ {0, 1} random variable where n is the number of
iterations that (A/B) action was consecutively selected, and a
value of 0 represents an instance where (A/B) was not selected.
We also note the following probability measure for (A/B),
where ρ is the learning rate induced by GA,B(θ).

P(ABn = 1) = max(ψ1 − ρn, 0)
P(AB Succeeds) = .10

Using these two measures we conclude that the probability
that the number of consecutive (A/B) actions is k is P(k) =∏k
i=1

9
10 ∗max(ψ1 − ρn, 0).

E[NAB | |ψ0⟩] =
∞∑

i=0

iP(i) =
⌊ a
ρ ⌋∑

i=0

i(ψ1 − ρn)

.
Take ρ = 0.03, which means that inter-sequence learning is

slow, and let ψ1 = 1. We find that the E[NAB | |ψ0⟩] = 2.6,
which is inline with the empirical expected depth of a sequence
given that the protist has no experience with the toxin and as
a result defaults to a first choice of (A/B). This would imply
that θ = .4949 We conclude this section by reiterating that the
expected depth calculus can also serve as a powerful tool to
calibrate the inter-sequence learning rate θ.

B. The Measurement Problem

We note that measuring the |ψ⟩ and |p⟩ qubits is commonly
used in the quantum circuit described above. However unlike
traditional measurements which collapse the qubits to a certain
state, the measurement we apply is only meant to retrieve
the probabilities associated with an action or the presence of
a toxin. In fact the algorithm described above only operates
as intended if the measurement does not de-cohere the state.
This feature of the algorithm initially seems to contradicts the
standard ”Copenhagen” interpretation of quantum mechanics
which does not allow for measurement without collapsing the
quantum state and loosing all probabilistic information stored
within the state. Despite the seeming contradiction the process
of non-collapsing measurements is not unusual for biological
systems and has been observed in the FMO complex, a light-
harvesting protein found in green sulfur bacteria where it
plays a critical role in directing excitation energy from antenna
complexes to reaction centers.

Studies by Graham Fleming and others have shown that this
energy transfer process involves quantum superposition, allow-
ing the excitation to explore multiple pathways simultaneously

[3]. During a fast excitation event, superposition states are
formed, enabling the system to reversibly sample relaxation
rates from all component exciton states. This process effi-
ciently directs energy transfer toward the lowest energy sink,
essentially allowing the system to select the optimal pathway,
akin to performing a quantum computation that senses many
states in parallel and identifies the correct solution, as indicated
by the high efficiency of energy transfer. This behavior can be
linked to the non-collapsing nature of measurement, where
the wavefunction does not collapse during measurement but
instead continues to evolve coherently, similar to the super-
position states in the FMO complex. The fact that the FMO
system maintains superposition to optimize energy transfer
seems to indicate that biological systems can preserve the
coherence of a quantum state, allowing measurements to reveal
information about particle positions without disrupting the
overall wavefunction. This possible explanation suggests that
biological systems like Stentor Roseli can reversibly sample
the quantum state and extract the necessary information to
make a decision without collapsing the state.

Bellow we offer two explanation for how coherent mea-
surement can unfold in biological and computational systems.
Both explanations indicate that our model for explaining the
behavior of Stentor Roselii is feasible despite the incorperation
of coherent measurment.

1) Bohmian Feasibility: Bohmian mechanics, also known
as the pilot-wave theory, offers a deterministic interpretation of
quantum mechanics where particles have well-defined trajec-
tories, guided by a pilot wave [10]. In this interpretation, the
state of a quantum system is described by both a wavefunction
ψ(r, t), which evolves according to the Schrödinger equation,

iℏ
∂ψ(r, t)

∂t
= − ℏ2

2m
∇2ψ(r, t) + V (r)ψ(r, t), (3)

and a set of particle positions r(t), which evolve determinis-
tically according to the guiding equation [10]:

dr(t)

dt
=

ℏ
m

Im
(∇ψ(r, t)
ψ(r, t)

)
. (4)

Unlike the Copenhagen interpretation, Bohmian mechanics
does not require the wavefunction to collapse during measure-
ments. Instead, measurement is viewed as an interaction that
reveals the position of the particles while the wavefunction
continues its unitary evolution. This non-collapsing feature is
particularly promising for quantum computing, where main-
taining coherent superposition is crucial. In a quantum com-
puter based on Bohmian mechanics, measurements could be
performed by interacting with the system’s particle configura-
tion, without disturbing the global wavefunction. This could
preserve the coherence of qubit states and enable subsequent
quantum operations, thereby maintaining the integrity of quan-
tum information processing throughout the computation.

2) Standard Feasibility: While Bohemian mechanics offers
a different mathematical formalism and ontological explana-
tion for the process of extracting probabilistic information
from states without decoherence, Quantum tomography offers
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another solution that is inline with the standard Copenhagen
interpretation [9].

Quantum tomography is a technique used to reconstruct the
state of a quantum system by extracting the probabilities of
various outcomes through a series of measurements. Unlike
traditional measurements that can collapse or decohere the
quantum state, quantum tomography is carefully designed to
infer the underlying probabilities without disturbing the state
irreversibly. This method reconstructs the density matrix, ρ,
which encodes the probabilities of all possible measurement
outcomes, including classical probabilities and quantum co-
herences, which represent superpositions and entanglements.
Instead of directly measuring and collapsing the state, tomog-
raphy relies on a series of weak, indirect, or varied measure-
ments over many identical copies of the state. By statistically
sampling from multiple preparations, the technique gathers
information without fully projecting the state, thus maintaining
coherence. Measurements in quantum tomography can include
projective measurements applied to large ensembles and weak
measurements that minimally disturb the state [9].

VI. CONCLUSION

In this paper, we have explored the complexity of decision
making in the single-celled organism Stentor roeselii. Through
an analysis of the data provided by Dexter, we confirmed that
the protist’s behavioral responses, though simple in nature,
follow statistical trends that imply a form of primitive learning
or adaptation. While previous attempts to model this behavior
using classical machine learning frameworks, such as decision
trees and neural networks, have failed to capture the proba-
bilistic aspects of the organism’s actions, we proposed a novel
quantum behavioral model that aligns with these complexities.

The quantum framework we introduced successfully simu-
lates the organism’s decision-making process by incorporating
both noise and probabilistic features observed in Stentor
roeselii’s behavior. By utilizing quantum information the-
ory, particularly quantum circuits with amplitude dampening,
memory effects, and coherent measurment our model captures
the stochastic nature of the protist’s decision-making hierarchy.
This allows for the representation of inter- and intra-sequence
learning that was absent in earlier models or hidden behind a
black box.

Our findings highlight the potential of quantum simulation
techniques in biology, particularly in understanding behaviors
that are inherently noisy and probabilistic, such as those of
Stentor roeselii. The proposed model not only offers an accu-
rate computational tool for replicating Dexter’s experimental
results but also opens new avenues for modeling decision-
making processes in biological systems where classical ap-
proaches may fail. Future work can extend this model to
incorporate more complex biological systems, offering deeper
insights into the intersection of quantum mechanics and bio-
logical behavior.

VII. OPEN QUESTIONS

What happens when we increase the memory of the protist?
Will the protist begin to learn more complex inter-sequence

patterns? For example it may learn that the ”AC” pattern
produces the highest efficacy. Furthermore if the protist has a
larger memory how will the intra-sequence behavior change?
For example if the protist uses the ”CCC” pattern before
eliminating the toxin will that result in a ≤ 0.70 probability
that (C) is chosen again due to some implied inefficiency. This
also begs the question; how much memory can we reasonably
endow the protist with? For the sake of the analysis contained
in this paper the protist has a memory of one time step, but
one can reasonably argue that a larger memory capacity is
possible.
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Abstract: Cognitive processes underlie economic relations. In this paper, we develop a conceptual, mathematical, and
computational framework for modeling market exchange as a series of dynamically interacting cognitive pro-
cesses. Specifically, we show how advertisers can build trust and gain confidence in their pricing power to the
point that they erode trust and undermine the efficacy of their advertising. Customers conversely orient towards
advertisers seeking information or turn away from them as unreliable communicators. These behaviors and
the patterns they generate occur inside a state space of unallocated perceived value. They constitute a small
subset of the full range of possible strategic and adaptive responses that define cognitive microeconomics.

1 Introduction

The principle that market exchange creates value is
one of the foundations of economics. Evidence of
trade in ochre crayons goes back around 300,000
years, to the beginning of our species (Brooks et al.,
2018). The basis for a market exchange is that two
parties assign asymmetrical value to a good (Smith,
1776). Yet the value assigned to the good by the seller
relative to the cost is not necessarily a simple inverse
of the value assigned to the good by the buyer rela-
tive to the cost; the asymmetry is often much more
favorable to both parties.

As a first approximation, we can use the labor the-
ory of value (Ricardo, 1821) to define the state space
of win-win solutions. Consider a skilled flint knapper
that makes five serviceable hand axes in a day, while it
takes his hunter neighbor a day of work to hunt an an-
imal, skin it, and prepare the pelt; each has a competi-
tive advantage (Ricardo, 1821). Say the hunter would
have to spend two days to make a single axe and the
knapper two days to acquire a single pelt, creating a
large unallocated value residual within the price equi-
librium. For instance, if they agree to exchange a pelt
for five axes, the hunter gets a value residual of five
days’ labor and the knapper a value residual of one
day’s labor. How does the market allocate this surplus
value? All points within this space are in principle ac-

ceptable, as they would result in a net benefit to both
parties.

Consider a product with twenty dimensions of
value, from packaging to color, shelf-life to hipness.
Winterfeldt and Fischer describe that for each of these
dimensions, we can attach a cost of materials and la-
bor; the sum of these represents the production cost
to the manufacturer (Von Winterfeldt and Fischer,
1975). Similarly, for the customer to reproduce each
of these qualities would require some cost, in many
cases far exceeding production costs. The difference
between these two arrays represents at once a value
residual and a field of win-win solutions for trade.
In an industrial society, most of the surplus value is
created by machinery fueled by external energy; hu-
man labor represents only a fraction of the cost. This
leaves plenty of surplus value to be divided among
producers and consumers.

We propose that this value residual is fundamen-
tally unallocated by the market. No laws of eco-
nomics determine how the value residual, or surplus
value (Marx, 2020), is divided between the two par-
ties in a market exchange, or between producers and
customers. The value residual could be magnani-
mously given away or taxed to finance a state; in the
following, we aim to show how it can give rise to a
complex dynamic of value and trust.

In summary, we propose that market exchange



relations are characterized by the creation of mul-
tidimensional state spaces of prospective value in
which actors navigate based on imperfect informa-
tion. Value spaces are viewpointed and need to par-
tially overlap to enable cooperative markets. Sur-
plus value is an expected feature of such transactions
and its allocation is not determined by market forces
alone. Instead, the value differential constitutes an
open space where the participants navigate in an adap-
tive decision process we may term ”wayfinding” (Mc-
Cubbins and Turner, 2020).

2 Communicative Potential

The residual value represented by the difference be-
tween actual production costs by the manufacturer
and the hypothetical production costs by the customer
creates a communicative potential, expressed through
the medium of advertising. On the one hand, prospec-
tive buyers need information about the products and
services available in the market to decide whether to
make a purchase. On the other hand, sellers have an
incentive to provide relevant information about their
product or service to persuade customers to purchase
it.

In this communicative act, which in the case of ad-
vertising is typically a one-way street from advertis-
ers to prospective customers, we propose that the two
parties are competing to capture a share of the resid-
ual value. In efficient markets, the market price of a
good will tend to move towards the production cost, in
effect allocating the lion’s share of the residual value
to the customer. In the present model, advertising is
a tool the producer uses to contest and attempt to re-
capture some of this value.

We propose the communicative potential as a
holistic concept that incorporates the expressive po-
tential of the advertiser as well as the receptive poten-
tial of the customer. We will explain how this commu-
nicative potential is dependent on the customer’s cost
of acquiring information and the degree to which they
trust that information. Through the development and
implementation of our dynamical model, we seek to
understand how these potentials are related and which
dynamics describe their intertwined trajectories.

2.1 Expressive and Receptive Potentials

Our starting point is the observation that communica-
tion is costly. On the part of the advertiser, this cost is
expressive: how should the ad be formulated linguis-
tically and visually, in which channels should it be
transmitted, and at what times and frequencies? For

the advertiser, the rate of return per ad matters: if a
campaign does not result in increased sales, it may be
a losing proposition to continue to increase the adver-
tising budget. On the part of the customer, the cost is
receptive: what is the information I need to make a de-
cision, where can I find that information, how difficult
will it be to collect it? The communicative dynamics
arise in how these latent potentials engage with each
other.

In order to prepare yourself for acquiring infor-
mation, you need to free up your mind from com-
peting concerns; you also need to activate the appro-
priate interpretive frames. This cognitive activation
has a small but potentially significant metabolic cost;
your brain is consuming sugars and oxygen and will
at some point need rest to recover. By activating a
certain cognitive frame, you selectively enhance your
ability to gather certain types of information, but at
the same time reduce your ability to acquire unrelated
types of information. In this way the creation of a
receptive potential imposes not only a cognitive and
metabolic cost, but also an opportunity cost.

Moreover, your decision to prepare a targeted re-
ceptive potential carries a certain amount of uncer-
tainty and risk. You must necessarily allocate re-
sources to listen before you know what you are going
to learn. Before you actually hear what the advertiser
is going to say, you cannot know with certainty that
the message is going to be informative along any of
the dimensions you may be interested in. Let’s con-
sider a product that has twenty relevant dimensions of
quality and functionality, from color and shape to ex-
pected lifetime and warranties; as a prospective cus-
tomer, you may be searching for information regard-
ing only five of these, and you cannot know before-
hand that information relevant to your search will be
provided. This uncertainty and risk adds to the cost
of attention by creating a functional instability in the
receptive potential.

The unavoidable cost associated with the creation
of a receptive potential means that it’s rational to be
discriminative in gathering information (Daugherty
et al., 2018), for instance by allocating a finite por-
tion of available resources to the task, monitoring the
unfolding act of communication, and extending or ter-
minating the interaction according to a running as-
sessment of the achieved and prospective costs and
benefits.



3 Dynamics of Trust

3.1 Generation of Trust

The decision to allocate resources to the task of col-
lecting information delivered through an advertise-
ment is modulated by trust. Consequently, we must
ask, how is trust generated? A simple way to model
this is to say that trust is generated when a given al-
location of attentional resources results in acquiring
information that produces a coherent action. That is
to say, we use information to guide our behavior, and
trust is produced when the information provided al-
lows us to guide our behavior so that our intentions
are successfully realized. In a marketing interaction,
let’s say a prospective customer (a ”prospect”) has
some initial interest in a product and is willing to al-
locate a modest attentional budget to an advertiser.
The advertiser provides some information about the
product and the prospect extracts some interpretation
from this communicative act that results in a a set
of expectations and intentions regarding the product.
If these exceed some threshold of available resources
and perceived net benefit, the prospect decides to pur-
chase. If the product fulfills the prospect’s expecta-
tions, as formed by the advertisement, trust is gener-
ated (Ogilvy, 1985). If you watch the ad for a smart-
phone and buy it, and you discover all kinds of fea-
tures you like that you weren’t even expecting, we
have a situation of an ”upside surprise”; in this case,
goodwill is generated, a positive credit. This type of
trust generation is described by Fung and Lee as an it-
erative process in which a customer must consistently
evaluate whether the information acquired resulted in
a successful interaction (Fung and Lee, 1999).

Figure 1: Fung & Lee Trust Development Cycle

3.2 Abuse of Trust

Just as trust can be produced and leveraged in social
processes in other domains (Bednar and Page, 2021),
advertisers can both produce and leverage trust. Hav-
ing built a trusting relationship with their customers,
advertisers can also behave in ways that leverage
and potentially deplete goodwill and undermine trust.
They may be motivated to do this in order to solve
local problems; for instance, they may be trying to
break into a crowded market already dominated by
other players. Or they may be trying to introduce new
products that haven’t been fully tested or to increase
profit margins.

Consider a company that has been engaging in
producing trust by creating advertisements that hon-
estly communicate the qualities and functionalities
of a product and have successfully built trust. They
might be tempted to leverage this trust by creating ad-
vertisements that exaggerate the benefits of the prod-
uct. The prospect will attend to this ad, trustingly take
it to be reliable, purchase the product, and be disap-
pointed by its qualities. This will erode trust. While
the advertiser may not be able to detect the loss of
trust directly, it acts as a latent variable that can be
inferred from observable behavior, such as the degree
of responsiveness to ads (Hopkins, 1923).

4 Dynamical Model

As described above the primary factors that drive the
advertiser-customer dynamics are the customers’ trust
in the advertisement and the cognitive cost trade-off
associated with acquiring information from an adver-
tisement. In modeling this dynamic we propose the
following iterative system.

τ = Purchase Cycle (1)
N = Terminal Purchase Cycle (2)
E(τ) = Expected Value (3)
A(τ) = Advertisement Count (4)
T (τ) = Trust (5)
P(τ) = Advertised Value (6)
β = Experiential Value (7)
α = Expected Value per Unit of Trust (8)
γ = Price Response Speed (9)
n = Memory (10)



σ(z) =
1

(1+ e−x)
−1/2 (11)

µ(τ) = σ(
1
n

τ−1

∑
i=τ−n

(β−P(τ))) (12)

Ae(τ) =
γ(Ac(τ)−Ac(τ−1))

2max(Ac(τ),Ac(τ−1))
(13)

E,T,P are all initialized with initial values
Eo,To,Po, and all variables defined above are logical
values.

Algorithm 1 Dynamical Model
for τ = (1,2,3,...,N) do

Ac = 0
while E(τ)< P(τ) do

E(τ) = E(τ)+αT (τ)
Ac(τ) = Ac(τ)+1

end
T (τ) = T (τ−1)+µ(τ)
P(τ) = P(τ−1)−Ae(τ)
E(τ+1) = βT (τ)

end

4.1 Model Explanation

First, we acknowledge that other factors such as mo-
nopolization may impact buying behavior. For ex-
ample if a company has created an ecosystem around
their product than customers will have less perceived
flexibility to change their buying behavior. Other fac-
tors like social class, gender, and life style play a ma-
jor role in a customers purchase behavior. Even a
company’s ability to gradually improve the quality of
their product can have an impact on a customer’s pur-
chase behavior.

However for the purpose of this simulation we
begin with a few assumptions. First the advertiser
creates a product with invariant experiential value β.
In other words the quality of the product does not
change. Next the customer has a tendency to pur-
chase the product but has the flexibility to choose not
to purchase the product. Take for example the BIC
ballpoint pen, a product that customers tend to pur-
chase but have the option to choose other pens on the
market. Its also a product whose design and quality
has not changed in over 50 years, As a result the ad-
vertiser is capable of only two distinct actions. First,
increasing a customer’s expected value of the prod-
uct through repeated advertisements or adjusting the
price of the product in order to catalyze a purchase.

At each purchase cycle τn, the advertiser enters

an advertisement cycle where the customer is inun-
dated with advertisements, counted within the vari-
able Ac. After each advertisement, the customer’s ex-
pected value E(τ) of the product is nudged closer to
the advertiser’s proposed value P(τ) at a rate of α, and
in direct relation to the customer’s trust in the adver-
tisement T (τ) (Mitchell and Olson, 1977). If trust is
low, then each advertisement will naturally be less ef-
fective in nudging the customer’s expected value. In
this way, the advertiser captures more of the surplus
value. Once the gap between the customer’s expected
value E(τ) and the advertiser’s proposed value P(τ) is
closed, the customer makes a purchase and Ac is reset
to 0 until the next advertisement cycle.

After the purchase, the customer evaluates the
product by determining the differential between their
experiential value and advertised value β−P(τ). If
the differential is positive, the customer is satisfied,
and trust T (τ) is nudged up, and vice versa. However,
trust can be sticky (Weilbacher, 2003), implying that
previous experiences with the product are considered
by the customers. To implement this, the model draws
on an arithmetic average of the customers’ n previous
evaluations of the product, which is fed into a sig-
moid function σ(z). The sigmoid function, in turn,
produces the value used to nudge trust. This is in line
with recent empirical results drawing from around
300,000 respondents across 71 countries which sug-
gests that product reliability ”has become a primary
driver of consumer trust in recent years” (Khamitov
et al., 2024). The use of the sigmoid function, on the
other hand, allows us to bound the delta of trust after
every purchase cycle τ which again reflects empirical
results which suggest that trust is earned and broken
with every customer experience and only in rare situ-
ations results in catastrophic loss or dramatic gain in
trust. (Khamitov et al., 2024)

Next, the advertiser adjusts their proposed product
value P(τ), based on the number of advertisements
they’ve been running to trigger a sale. To adjust their
proposed value, the advertiser calculates their adver-
tisement expenditure by measuring the difference be-
tween the number of advertisements in the τth

n cycle
and τth

n−1 cycle. If the number of advertisements has
increased, the advertiser will decrease their proposed
price at a rate γ. This is done in response to a per-
ceived loss of pricing power as their previous adver-
tising cycle indicated a loss of efficacy. The latent
variable driving this effect is a decline in trust in the
ads on the part of the customer. After the advertiser’s
proposed price is updated, the customer resets their
expected value to their experiential value weighted by
their current degree of trust in the advertiser. This fi-
nal step mimics a reasonable customer who sets their



expected value to the value they’ve just experienced
post-purchase but who is still impacted by their resid-
ual trust in the advertisement. This type of dual fac-
tor approach to customer-side pricing is discussed by
Sung and Chung who indicate that the price a cus-
tomer is willing to pay is impacted both by the quality
of the product and trust in the product, and that cus-
tomers are willing to pay a premium for products pro-
duced by known/trusted brands (Sung et al., 2023).

4.2 Simulations

Below, we discuss three simulated examples along
with their associated dynamics and interpretations. In
figures 2-7, the x-axis denotes the purchase cycles τn.
In figures 2, 4, and 6, the red horizontal line represents
the experiential value β, the green curve represents
the advertiser’s proposed value, and the blue curve
represents the customer’s trust in the advertisement.
In figures 3, 5, and 7, the blue curve represents the
customer’s trust in the advertisement, and the green
curve represents the number of ads run by the adver-
tiser during a given purchase cycle τ.

These simulations highlight the various interact-
ing communicative and cognitive processes that cre-
ate a repertoire of market behaviors. These processes
include the advertiser’s systematic production of trust,
the advertiser’s decision to leverage existing trust by
raising prices, and to respond to decreasing ad effi-
cacy by lowering prices. On the customer side, they
include a willingness to allocate attentional resources
to ads, to raise their expected value as a function of
trust, to learn about the experienced value of a prod-
uct, and to gradually lose trust when disappointed. We
emphasize that we explore only a subset of all possi-
ble strategies. Market participants act with imperfect
information about each other and the qualities of the
product and attempt to manage cost and risk, includ-
ing the financial and cognitive costs and risks of com-
munication. Let’s explore three scenarios: Commu-
nication Failure, Opportunistic Advertising, and Re-
strained Advertising.

4.3 Communication Failure

We begin with a scenario where the advertiser loses
the trust of the customer, resulting in runaway ad
spending and a communication breakdown. To model
this, we substitute Ae(τ) in Algorithm 1 with γ( dT (τ)

dτ ).
Conceptually, this implies that trust is the driving
force behind an advertiser’s change in proposed value.
When trust has positive momentum, the advertiser is
incentivized to abuse that trust and increase the pro-
posed value to increase revenue. Conversely, when

trust is in decline, the advertiser seeks to rebuild trust
by decreasing their proposed value to more closely
align with the customer’s expected value. In this sce-
nario, when γ is sufficiently small, trust collapses, and
the advertiser is too slow in adjusting their proposed
value to regain trust quickly. This result is observed
in Figure 2, showing a large lag between trust and the
proposed price.

Figure 2: Communication Failure - Green: Advertised
Price, Blue: Trust, Red: Initial Advertised Price A(0)

This delay results in trust reaching a negative
value, where no amount of advertisements can help
the advertiser regain trust, as each advertisement will
decrease the customer’s expected value via the up-
date equation E(τ) = E(τ)+αT (τ). In other words,
once trust drops below 0, the customer begins to ac-
tively resist attempts by the advertiser to regain their
trust. This can be seen in figure 3, where trust pre-
cipitates rapidly after the 40th purchase cycle and the
advertiser fruitlessly increases the number of ads they
run. This situation represents a communication fail-
ure between the advertiser and the customer, a term
that Ries and Trout use to characterize the state of ad-
vertising in the 1970s and 80s (Trout and Ries, 1986).

Figure 3: Communication Failure - Green: Number of Ads,
Blue: Trust

4.4 Opportunistic Advertising

In this simulation, we revert to our main algorithm
and choose a γ that produces stable oscillations. The
results are visible in Figure 4, where both the trust and
the advertiser’s proposed value oscillate fairly regu-



larly. These stable oscillations model the push-and-
pull relationship between the advertiser and customer,
where pricing power is modulated by trust. Note the
slight lag between trust and the advertiser’s proposed
value: this captures the causal arrow of increasing
trust resulting in more efficient advertising and the
generation of pricing power. Conversely, when the
advertiser notices a drop in trust reflected in decreased
sales and low efficacy of their ads, this induces the
advertiser to lower their prices to maintain sales and
eventually to rebuild trust.

Figure 4: Opportunistic Advertising - Green: Advertised
Price, Blue: Trust, Red: Initial Advertised Price A(0)

In Figure 5, we find the corresponding adver-
tisement count at each purchasing cycle plotted with
the customers’ trust. Here, an interesting dynamic
emerges between Ac(τ) and T (τ). The peaks of trust
correspond to the troughs of advertisement and vice
versa.

Figure 5: Opportunistic Advertising - Green: Number of
Ads, Blue: Trust

This dynamic illustrates that when trust is high,
the need for continuous advertisements is reduced
since the customer already trusts the product due to
repeated positive purchase experiences. Furthermore,
when trust is high, the cognitive cost of accepting the
advertiser’s proposed price is decreased, as the cus-
tomer has no reason to doubt or scrutinize the adver-
tisement message. This means that each advertise-
ment carries more weight, and, in aggregate, the total
number of advertisements required to trigger a pur-
chase is small. However, as customers experience that

the product value is no longer as high as they were led
to expect by the advertisements, their trust begins to
decline and the efficacy of each ad rapidly begins to
drop. The advertiser responds at first by increasing
the frequency of ads in an attempt to maintain sales,
peaking only when the payoff per ad drops too low
and the game is no longer worth the candle: customers
have lost almost all trust and are no longer respond-
ing much to the ads. At that point, the advertiser has
lost his ability to maintain high prices and responds
by moderating the value claims he makes in the ads.
As customers begin to repeatedly find that the adver-
tiser’s claims are exceeded by experience, trust finally
turns around. The advertiser notices that the efficacy
of the ads is rising and responds by decreasing the ad
frequency and raising prices, starting a new cycle.

In this scenario, we assume that the manufacturer
has a fixed production capacity and is acting to main-
tain steady sales. A company with a growth capacity
may behave differently, for instance by sustaining the
frequency of advertising even in a high-trust and high-
efficacy environment. This would change the shape
of the ad frequency curve; however, it would not
change the fundamental dynamics. A company eager
to exploit the opportunity for growth would eventu-
ally encounter diminishing returns from their adver-
tising campaigns due to falling trust and be forced to
moderate their claims and lower their prices to main-
tain sales.

Do these swings make sense as attempts to secure
a larger share of the available value residual? The os-
cillations pivot around the customers’ expected value
as determined through their experiences so that the
end result is that the surplus value in play is evenly
distributed around this axis. Any advantage of adver-
tisers over customers is short-lived and negated in the
next downturn; nevertheless, the short-term opportu-
nities are real. Even if it is pointless to swing back
and forth, the temptation to try to sell a product for
more than it is worth is enduring.

Early advertising was dominated by medical
preparations, promising miraculous cures (Gorlach,
2002). ”Advertisements are now so numerous that
they are very negligently perused,” Samuel Johnson
wrote in 1759, ”and it is therefore become necessary
to gain attention by magnificence of promises, and
by eloquence sometimes sublime and sometimes pa-
thetic” (Johnson, 1759). Such magnificent promises
may work for a while, preying on the naive; how
long the favorable wave of exploitation will last is not
known in advance and one has the option of going out
of business when the bluff is called.

This simple opportunistic advertising cycle is
open to refinement, for instance by allowing trust to



be imported from the outside, such as with paid con-
sumer testimonies or expert endorsements.

4.5 Restrained Advertising

By lowering γ, we can moderate the oscillations,
signifying that advertisers are less responsive to the
temptation to ramp up their claims when ad efficacy
is high. Advertisers may learn that staying closer to
the facts will progressively narrow the swings in ad
efficacy. The outcome is visible in Figure 6, where
the advertised price behaves like a dampened oscilla-
tor, converging towards the red line of expected value
as τ→ ∞.

Figure 6: Restrained Advertising - Green: Advertised Price,
Blue: Trust, Red: Initial Advertised Price A(0)

What the scenario shows is that an enterprise can
establish a stable relation with its customers by pro-
viding a satisfactory product and advertising it at a
value point that matches its experienced value. An
advertiser adopting this strategy is showing a restraint
that holds it back from exploiting the trust it painstak-
ingly builds. This implies renouncing an opportu-
nity for profit, possibly quite significant. A company
wishing to stay in business over the long term, how-
ever, may well elect this strategy and prioritize long-
term predictability and sustainability over short-term
profit.

In Figure 7, the corresponding number of adver-
tisements run during each purchase cycle is plotted,
revealing that it similarly approaches a stable value.
This means the company’s advertising efforts and ex-
penses will stabilize, reducing uncertainty and risk.
By communicating effectively and honestly, the com-
pany can generate a reliable and sustainable business
grounded in satisfied customers.

Figure 7: Restrained Advertising - Green: Number of Ads,
Blue: Trust

An interesting entailment of the model is that rais-
ing the experienced value of the product may be the
only stable way in which a company can secure a last-
ing larger share of the surplus value. This opens up
an exploration of whether advertisements in principle
are capable of altering not only the expected value of
a good but also the experienced value.

The luxury market may be a good domain to study
this issue. The experienced value of a product is not
simply a fact of the market; it is a complex, multi-
dimensional act of cognition. The experience of a
product may be modulated by a sustained advertis-
ing campaign to establish an exclusive brand. By
legally protecting a brand, the advertiser is able to
control the associations to the product that the con-
sumer is exposed to, thus constructing a cognitive
frame within which the consumer will experience the
product (Ogilvy, 1985). In this scenario, the purpose
of advertising is to construct a cognitive platform that
will raise the customers’ assessment of the value of
the product experience itself.

5 Conclusion

This paper has explored the dynamics of trust and
communication in the context of advertising and mar-
ket exchanges. We have developed a conceptual,
mathematical, and computational model that captures
some of the cognitive processes underlying these dy-
namics, focusing on the role of the cognitive and fi-
nancial costs of production and reception of ads, the
generation and opportunistic leveraging of trust, and
the effects of strategic price adaptation.

Our model illustrates how trust is a pivotal ele-
ment in the customer-advertiser relationship. Trust
is built when advertisements accurately communicate
product qualities, leading to fulfilled customer expec-
tations. However, this trust is fragile and can be eas-
ily eroded if advertisers choose to exploit it by ex-
aggerating product benefits, leading to customer dis-
appointment. In addition, the model shows that the



cognitive cost of processing information from adver-
tisements influences consumer behavior. Consumers
are selective in their attention due to these costs and
may choose to incrementally ignore advertisements as
trust is eroded.

More generally, we propose that the behaviors of
producers, advertisers, and customers take place in a
space of asymmetrical perceptions of value that in it-
self does not determine economic outcomes. Instead,
a rich panoply of cognitive processes that interact in
complex ways allocate the prospective surplus value
in ways that often do not reach a stable equilibrium.
The emerging patterns may for instance oscillate sta-
bly for long periods, certain interventions will pro-
gressively dampen these oscillations and result in lo-
cally stable states, or trust may plunge below zero and
result in communicative failure.

The information-processing approach to market
exchanges defines a rich field of research in cognitive
microeconomics and a space for computational mod-
els to create simulation frameworks for exploring this
field. Future research may for instance examine the
effects of importing trust into advertising by various
means, compare the dynamics of broadcast advertis-
ing versus targeted digital advertising, and model how
customers’ experiences with a product, which in the
present model we assume to be invariant, can in fact
be nudged up through the cultivation of a brand im-
age – a prospect that has potentially dramatic conse-
quences for the long-term allocation of surplus value.

By situating microeconomics inside cognitive sci-
ence, we assert that the processes that characterize
market exchanges do not follow invariant laws, but
instead create unstable possibilities with probabilistic
outcomes. Within the context of the model developed
above cognitive variables like {β,α,γ,n} form a space
of parameters that define an infinite number of pos-
sible customer-advertiser dynamics. These parame-
ters can be adjusted stochastically by relevant actors
which presents them with a large possibility space of
options at each decision point in the market exchange
cycle. Only a subset of this space has been explored
to date in actual market interactions and only a small
subset of the parameter space has been explored in
this paper, suggesting that we should expect the con-
tinued emergence of new behaviors. A much smaller
proportion of behaviors has been modeled in terms of
the cognitive processes involved, creating a rich terri-
tory for new discoveries.
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Recasting the Aiyagari Model of Income into a Mean Field Game Problem

1 Introduction

In this paper, we seek to replicate the work done Achdou,
Han, Lasry, Lions, and Moll in their article ”Income and
Wealth Distribution in Macroeconomics: A Continuous-Time
Approach”. The paper focuses on casting the Aiyagari In-
come Model as a Mean Field Game problem, that can be
solved in terms of the associated Hamilton-Jacobi Bellman
(HJB) and Focker-Plank (FP) equations. In this paper we re-
view the Aiyagari model and the derivation of the MFG sys-
tem.

For the purposes of this paper we add a small adjust-
ment to the simulation in regards to the total labor supply.
As currently formulated total labor supply remains constant
throughout the simulation, however we elect to incorporate
the idiosyncratic unemployment statuses of households in or-
der to more accurately approximate how the system responds
to shocks in labor supply. The motivation behind this adjust-
ment comes from research done by Professor Anthony Klotz
at Texas A&M who coined the term ”The Great Resignation”.
The term describes the sudden jump in resignations amidst
the COVID 19 pandemic. This phenomenon emphasizes the
importance of considering labor supply changes when mod-
eling household-firm interactions. Its important to note that
the Aiyagari Model of Income does incorporate idiosyncratic
state changes in employment, however its traditionally left
out of the total labor supply computation. Throughout this
paper we present a brief primer of the Aiyagari model of
income that’s been modified to incorporate idiosyncratic la-
bor supply, along with necessary background of the HJB and
KFP equations, before finally introducing a derivation of the
Mean Field Game representation of our labor adjusted in-
come model.

2 Aiyagari Model of Income: Introduction

The Aiyagari Model, is a macroeconomic framework that
models the interaction between households and firms. Specif-
ically, it models how households save and spend portions
of their wealth in the face of idiosyncratic income shocks
brought on by employers, and incomplete market informa-
tion. The model assumes that households are heterogeneous
in that they experience different income levels and wealth.
The idiosyncratic income shocks are also a key feature of the
model, since it describes unpredictable events in the lifetime
of a household such as illness, job loss, or other personal eco-
nomic changes like medical emergencies.

Under the Aiyagari framework, households consume in or-
der to maximize the utility of their consumption. On the other

hand households save not only to smooth consumption over
their lifetime but also as a precaution against future income
shocks. Our variation of the Aiyagari model will also fea-
ture a representative firm, that hires labor and purchases cap-
ital. The firm is also subject to the idiosyncratic productivity
shocks brought on by sporadic changes in labor productivity.
An equilibrium solution represents a distribution of wealth
such that households are optimally choose their savings and
spending to optimize for utility and smooth consumption.

Now we move on to the mathematical formulation of the
Aiyagari model in terms of dynamic stochastic differential
equations.

3 Aiyagari Model of Income: Formalization

3.1 Households

In order to define the necessary mathematical formulations
of this problem we first define a few terms from the house-
hold’s perspective, which will be used throughout this paper.

zt = Household labor output (1)
wt = Household wages (2)
rt = Risk-free interest rate (3)
at = Household wealth (4)
ct = Household spending/consumption (5)
D = Borrowing limit (6)

3.1.1 Utility Functional:

As stated above, households spend portions of their wealth
to gain some sort of utility from their consumption, whether
that utility be in the form of satisfaction, happiness, or value.
Their goal is often to smoothen consumption and maximize
utility. This goal is given in the form of the following utility
functional in continuous time.

(7)U = max
{ct}

Et0

∫ ∞

t0
e−ρtu(ct)dt

ρ in this case is traditionally known as the rate of time
preference. It reflects the household’s preferences for present
consumption over future consumption. In other words a ρ≈ 0
means that that a household prioritizes current spending over
future spending since it increases the present utility. Whereas
a higher ρ will discount the present value of the utility gained
through consumption, and will place a higher weight on fu-
ture consumption.



In discrete time analogue of the household utility function
can be expressed as

(8)U = max
ct

∞

∑
t

e−ρtu(ct)

where ρ, again, is the degree to which a household priori-
tizes current consumption verses future consumption. If ρ≈ 1
then the household prioritizes future spending over current
spending.

3.1.2 Utility Function:

The utility function u(ct) in equation (6) and (7) quantifies
the satisfaction, happiness, or value an individual received
from consumption at time t. the utility function is typically
non-decreasing, since higher consumption will often lead to
higher utility. However in order to capture the diminishing
marginal utility of consumption, we impose that our utility
function is strictly concave. In other words as consumption
increase the marginal utility gained from consuming one ad-
ditional unit decreases. Given those key features we can pro-
pose a few useful utility function. The first of which is called
constant relative risk aversion (CRRA).

(9)u(c) =
c1−γ

1− γ

Or we can use exponential utility.

(10)u(c) =
−1
θ

e−θc

And lastly we can consider logarithmic utility

(11)u(c) = ln(c)

Figure 1: Utility Functions

3.1.3 Household Dynamics:

Households must also adhere to certain spending dynamics
that relate their consumption wealth and income.

(12)dat = (ztwt + rtat − ct)dt

From the above equation we can observe that the change in
wealth is function of a households wage income, income via
risk-free investment, and the current consumption. The func-
tion

(13)s(t,a,z) = ztwt + rtat − ct

will represent the amount saved by a household at time t, and
will be important when solving the system using a mean field
game framework.

We also suject household consumption to a borrowing con-
straint, which expressly prohibits a household from taking on
an excessive amount of debt D.

(14)at ≥ −D

We also impose the following state constraint boundary con-
dition, to ensure that constraint (14) is never violated.

(15)ct ≤ ztwt + rt(1 + at)− at+1

3.2 Firms:

On the other side of the interaction with households will be
a representative Neoclassical firm. In order to define the nec-
essary mathematical formulations of the firm-side problem
we will again define a few terms from the firm’s perspective.
These terms in addition to those defined for Households will
be used bellow.

At = Total factor production (16)
α = Proportion of investment allocated to capital (17)
Kt = Total capital supply (18)
L = Total labor supply (19)
δ = Depreciation rate of capital (20)
Yt = Firm’s output/productivity (21)

(22)

A firms productivity is fully characterised by a firms invest-
ment in capital and labor. This is a popular production func-
tion that was first developed by Charles Cobb and Paul Dou-
glas, and its the same production function used by the Aiya-
gari income model.

(23)Yt = AKα
t L1−α

t

3.2.1 Total Factor Production:

In the simplest case of the Aiyagari model A, sometimes
refered to as the total factor productivity (TFP), is constant.
However At can also be modeled as a function of time to re-
flect technological progress or other factors affecting produc-
tivity. A simple time-dependant model of the TFP can be
represented as an exponential where A0 is the initial level of
productivity and γ∗ is the rate of technological progress. In
this way we model TFP in way that is analogous to Moore’s
law which describes the exponential growth of the number of
transistors on a microchip. A phenomenon which has a direct
effect on the productivity of digital systems.

(24)At = A0eγ∗t



3.2.2 Total Labor Supply:

Once again in the simplest case of the Aiyagari model the
total labor supply L is considered constant. However Lt can
also be modeled as a function of time to reflect growth in
population or changes in labor supply. We will formalize this
adjustment bellow in section 4.

3.2.3 Firm Side Problem & Derived Quantities:

Regardless of how Kt or Lt are expressed the firm’s aim to
maximize it production output remains the same. The prob-
lem can be given in terms of the productivity of the firm, ap-
preciation/depreciation of assets, and wage spending.

(25)max
K,L
{AKα

t N1−α − (rt + δ)Kt − wtLt}

Our aim will be to study the household behavior instead
of the firm-side behavior, so we will not explicitly be using
(25). However the firm’s first order conditions with respect
to capital supply Kt allows us to derive an explicit expression
for the interest rate rt .

(26)rt = αAKα−1
t L1−α

t − δ

And the firm’s first order condition with respect to labor sup-
ply L allows to nail down an explicit expression for wages
wt

(27)wt = (1− α)AKαL−α
t

3.2.4 Idiosyncratic Income Shocks:

In reality households are subject to idiosyncratic income
shocks. In continuous time we can either represent these in-
come shock as a diffusion process, where the change in in-
come (zt) can be expressed as

(28)dz = µ(z)dt + σ2dBt

where sigma is the standard deviation of the magnitude of the
shocks and µ(z) is drift of income. There are two ways of
approaching the construction of µ(z). First we can assume
that income slowly drifts up as a result of raises in wage or
inflation adjustment. In this case

(29)µ(z) = mt + b

where m is the rate at which income drifts up and b is the
average income at time 0. This construction may be useful
if the reader seeks to implement the model for sufficiently
large time horizon. However in the short term, we can treat zt
as a mean reverting process. Under this assumption, we can
construct µ(z) as an Ornstein-Uhlenbeck Process.

(30)µ(z) = θ(z̄− z)

Where θ is the rate of mean reversion, and z̄ is the average
income to which zt reverts.

Figure 2: Idiosyncratic Income Shocks

4 Labor Supply Adjusted Model

Incorporating a change in employment or unemployment
status into the total labor supply term in the Aiyagari Model,
which traditionally uses a more simplified labor market rep-
resentation, involves modifying the model to account for dy-
namic changes in labor force participation based on individ-
ual states which are also subject to stochastic changes. To im-
plement this adjustment we adopt Achdou, Han, Lasry, Lions,
and Mol’s use of a 2 state Poisson process to model income
idiosyncrasy.

A two-state Poisson jump process is a type of stochastic
process that alternates between two distinct states, 0 and 1,
with transitions occurring randomly at certain rates. We can
denote the two states as S0 = unemployed and S1 = employed,
the transitions between these states are governed by Poisson
processes with different intensity rates.

Let λ01 be the rate at which transitions occur from S0 to S1
and λ10 be the rate for transitions from S1 to S0. The process
can be described by the following transition probabilities:

(31)P(St+∆t = 1|St = 0) = λ01∆t

(32)P(St+∆t = 0|St = 1) = λ10∆t

However we propose that λ01 and λ10 are also subject to
random fluctuations. We argue that the transition rates must
not be fixed and instead ought to be sensitive to macroeco-
nomic fluctuations. For instance, during a recession, job-
separation rates might increase (due to layoffs and business
closures), and job-finding rates might decrease (due to re-
duced hiring). Conversely, in a booming economy, job-
finding rates might increase, and job-separation rates might
decrease. Furthermore changes in government policy, such as
increased unemployment benefits or job creation programs,
can affect the incentives for individuals to find or leave
jobs. Similarly, external shocks like technological changes
or global events can rapidly alter the labor market landscape.
Given these realistic conditions we assume that our transition
rates are uniformly distributed.

The job-finding rate λ01 is drawn from a uniform distribu-
tion as follows:

(33)λ01 ∼ Uniform(a01,b01)

where a01 and b01 are the lower and upper bounds of the dis-
tribution, respectively. Similarly, the job-separation rate λ10
is drawn from a uniform distribution:

(34)λ10 ∼ Uniform(a10,b10)



where a10 and b10 are the lower and upper bounds of the dis-
tribution for λ10, respectively.

We then use the above formulation of idiosyncratic em-
ployment changes to dynamically simulate the total labor
supply at each time step in our simulation. We do this by
letting Lt be the dynamically adjusting average described bel-
low.

(35)Lt =
z0λ01 + z1λ10

λ01 + λ10

This formula computes a weighted average of the productiv-
ities (z j) for employed and unemployed households, where
the weights are the transition probabilities between the states.
This can be interpreted as an expectation of income or pro-
ductivity level, taking into account the likelihood of being in
either state. This allows Lt to reasonably estimate the total
labor supply/productivity at any given time step.

Luckily, our labor supply adjustment does not greatly im-
pact the deviating of our mean field game representation of
the Aiyagari model, So we proceed by presenting a general
derivation of the two core PDEs of a mean field game, before
recasting the Labor Ajusted Aiyagari model.

5 General MFG System Derivation

5.1 General HJB Equation Derivation

In this section we derive the Hamilton-Jacobi-Bellman
equation’s generally.The Hamilton-Jacobi-Bellman (HJB)
equation is a cornerstone in the theory of optimal control. It
provides a necessary condition for optimality across a wide
range of control problems, including both deterministic and
stochastic systems. The derivation below outlines the funda-
mental steps involved in arriving at the HJB equation.

Assume a control system described by the differential
equation

(36)ẋ(t) = f (x(t),u(t), t)

where x(t) represents the system state at time t, u(t) denotes
the control input, and f is a function defining the system dy-
namics. The objective is to find a control policy u(t) that
minimizes the cost functional

(37)J = g(x(T )) +
∫ T

t0
L(x(t),u(t), t)dt

where g(x(T )) is the terminal cost, and L(x(t),u(t), t) is the
running cost.

Step 1: Value Function. Define the value function V as
the minimum cost-to-go (see principle of least action) from
a state x at time t, under the given system dynamics and cost
structure:

(38)V (x(t), t) = min
u

{
g(x(T )) +

∫ T

t
L(x(τ),u(τ),τ)dτ

}

Step 2: Principle of Optimality. The principle of optimality
states that any optimal path’s subpath is also optimal for its

subproblem. This allows expressing the value function at t +
dt as:

(39)
V (x(t + dt), t + dt) = min

u
{L(x(t),u(t), t)dt

+V (x(t) + ẋ(t)dt, t + dt)}

Step 3: Hamilton-Jacobi-Bellman Equation. By expanding
V (x(t) + ẋ(t)dt, t + dt) using Taylor’s series and neglecting
higher-order terms, we obtain:

(40)V (x(t), t) +
∂V
∂t

dt + ∇V · ẋ(t)dt

= min
u
{L(x(t),u(t), t)dt +V (x(t), t)}

After simplifying, the HJB equation emerges as:

(41)
∂V
∂t

+ min
u
{L(x,u, t) + ∇V · f (x,u, t)} = 0

This partial differential equation is central to solving optimal
control problems by determining the value function V (x, t)
and thereby the optimal control policy.

5.2 General Focker Plank Equation

In this section we derive the general Kologmorov Focker-
Plank equation. To do this We consider a continuous-time
stochastic process described by the Stochastic Differential
Equation (SDE)

dXt = µ(Xt , t)dt +σ(Xt , t)dWt

where Xt is the state variable at time t, µ(Xt , t) is the drift
coefficient, σ(Xt , t) is the diffusion coefficient, and dWt rep-
resents the increment of a Wiener process (or Brownian mo-
tion).

Step 1: Chapman-Kolmogorov Equation. The Chapman-
Kolmogorov equation for two times s< t states the probabil-
ity density function p(x, t|y,s), of the process being in state x
at time t, given it was in state y at time s, satisfies

p(x, t|z,0) =
∫

p(x, t|y,s)p(y,s|z,0)dy.

Step 2: Infinitesimal Generator. The infinitesimal gener-
ator L, acting on functions f of the process’ state, is given
by

L f (x) = lim
∆t→0

E[ f (Xt+∆t)|Xt = x]− f (x)
∆t

.

For our SDE, this is

L f (x) = µ(x, t)
∂ f
∂x

+
1
2

σ2(x, t)
∂2 f
∂x2 .

Step 3: Derivation of the Fokker-Planck Equation. Con-
sidering a small time increment ∆t and using the properties
of Xt , the Fokker-Planck equation is derived as



∂p
∂t

=− ∂
∂x

[µ(x, t)p]+
1
2

∂2

∂x2 [σ
2(x, t)p].

This equation describes how the probability density of the
state variable Xt evolves over time due to both deterministic
drifts and stochastic diffusions.

5.3 Aiyagari Model HJB Equation

In this section we will recast the Aiyagari model, where
the idiosyncratic income changes are represented by a 2 state
Poisson Process, into an HJB equation. To do this we will
cook a bellman equation that serves the encodes similar fea-
tures to the Aiyagari model above.

Consider the following income fluctuation problem in dis-
crete time. Periods are of length ∆, individuals discount the
future with discount factor

(42)β(∆) = e−ρ∆

and individuals with income y j keep their income with prob-
ability

(43)p j(∆) = e−λ j∆

and switch to state y− j with probability 1− p j(∆). The Bell-
man equation for this problem is:

(44)
v j(at) = max

c

{
u(c)∆ + β(∆)(p j(∆)v j(at+∆)

+ (1− p j(∆))v− j(at+∆))
}

subject to

(45)at+∆ = ∆y j + rat − c + at

(46)at+∆ ≥ a

functionally the Bellman equation encodes a households
desire to maximize current utility while balancing the proba-
bility of future income shocks on the capacity for consump-
tion to produce utility.

For j = 1,2. We will momentarily take ∆→ 0 so we can
use that for ∆ small

(47)β(∆) = e−ρ∆

≈ 1− ρ∆

(48)p j(∆) = e−λ j∆

≈ 1− λ j∆.

Substituting these into (4) 4we have

(49)
v j(at) = max

c

{
u(c)∆ + (1− ρ∆)((1− λ j∆)v j(at+∆)

+ λ j∆v− j(at+∆))
}

subject to (45) and (46). Subtracting (1−ρ∆)v j(a) from both
sides and rearranging, we get

(50)∆v j(at) = max
c

{
u(c)∆ + (1− ρ∆)(v j(at+∆)− v j(at))

+ λ j∆(v− j(at+∆)− v j(at+∆))
}

Dividing by ∆, taking ∆→ 0 and using that

(51)
lim

∆→0

v j(at+∆)− v j(at)

∆

= lim
∆→0

v j(∆y j + rat − c + at)− v j(at)

∆

= v′j(at)(y j + rat − c)

we find (52); The HJB equation for the Aiyagari model.

(52)ρv j(a) = max
c

{
u(c) + v′j(a)(y j + ra− c)

+ λ j(v− j(a)− v j(a))
}
,

5.4 Aiyagari Model Focker Plank Equation

Recall that under our labor adjustment a household can ei-
ther be employed or unemployed, and that the transition from
one state to another follows a two-state Poisson process. For
the sake of stability we assign an unemployed household a
low productivity state and vice versa; z j ∈ {zL,zH}. Also re-
call that wealth evolves as follows.

at = at+∆−∆s j(at)).



We let G j(a, t) define the wealth distribution CDF of our
population of households. Such that the bellow quantity rep-
resents the fraction of people with income z j and wealth be-
low a.

G j(a, t) = P(at ≤ a,zt = z j)

We claim that the probability of an individual having
wealth bellow a is the following. Intuitively this makes sense
since the probability of a household having wealth bellow a
at t+∆ is equal to the probability that a household has wealth
bellow a at the previous time step plus the probability that the
household’s current wealth is greater then a at time t but has
the capacity to cross bellow the threshold a during the next
time step.

P(at+∆ ≤ a) = P(at ≤ a)︸ ︷︷ ︸
already below threshold a

+P(a ≤ at ≤ a− ∆s j(a))︸ ︷︷ ︸
cross threshold a

(53)

which is equivalent to

(54)P(at+∆ ≤ a) = P(at

≤ a− ∆s j(a))

Now in order to compute the joint probability of P(at ≤
a,zt = z j) we incorporate the probabilities of income shocks
as defined in (47) and (48).

(55)

P(at+∆ ≤ a,yt+∆ = y j) = (1− ∆ j)Pr(at

≤ a− ∆s j(a),yt

= y j) + ∆− j Pr(at

≤ a− ∆s− j(a),yt

= y− j).

We then use the definition of G j, which yields the follow-
ing.

(56)G j(a, t + ∆) = (1− ∆ j)G j(a− ∆s j(a), t)
+ ∆− jG− j(a− ∆s− j(a), t)

We then divide out by ∆, then take ∆−→ 0. Using the fact
that g(a) = ∂aG(a), we get the KFP equation.

0 =− d
da

[s j(a)g(a)]−λ jg(a)+λ− jg− j(a),
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