Recasting the Aiyagari Model of Income into a Mean Field Game Problem

1 Introduction

In this paper, we seek to replicate the work done Achdou,
Han, Lasry, Lions, and Moll in their article “Income and
Wealth Distribution in Macroeconomics: A Continuous-Time
Approach”. The paper focuses on casting the Aiyagari In-
come Model as a Mean Field Game problem, that can be
solved in terms of the associated Hamilton-Jacobi Bellman
(HJB) and Focker-Plank (FP) equations. In this paper we re-
view the Aiyagari model and the derivation of the MFG sys-
tem.

For the purposes of this paper we add a small adjust-
ment to the simulation in regards to the total labor supply.
As currently formulated total labor supply remains constant
throughout the simulation, however we elect to incorporate
the idiosyncratic unemployment statuses of households in or-
der to more accurately approximate how the system responds
to shocks in labor supply. The motivation behind this adjust-
ment comes from research done by Professor Anthony Klotz
at Texas A&M who coined the term “The Great Resignation”.
The term describes the sudden jump in resignations amidst
the COVID 19 pandemic. This phenomenon emphasizes the
importance of considering labor supply changes when mod-
eling household-firm interactions. Its important to note that
the Aiyagari Model of Income does incorporate idiosyncratic
state changes in employment, however its traditionally left
out of the total labor supply computation. Throughout this
paper we present a brief primer of the Aiyagari model of
income that’s been modified to incorporate idiosyncratic la-
bor supply, along with necessary background of the HIB and
KFP equations, before finally introducing a derivation of the
Mean Field Game representation of our labor adjusted in-
come model.

2 Aiyagari Model of Income: Introduction

The Aiyagari Model, is a macroeconomic framework that
models the interaction between households and firms. Specif-
ically, it models how households save and spend portions
of their wealth in the face of idiosyncratic income shocks
brought on by employers, and incomplete market informa-
tion. The model assumes that households are heterogeneous
in that they experience different income levels and wealth.
The idiosyncratic income shocks are also a key feature of the
model, since it describes unpredictable events in the lifetime
of a household such as illness, job loss, or other personal eco-
nomic changes like medical emergencies.

Under the Aiyagari framework, households consume in or-
der to maximize the utility of their consumption. On the other

hand households save not only to smooth consumption over
their lifetime but also as a precaution against future income
shocks. Our variation of the Aiyagari model will also fea-
ture a representative firm, that hires labor and purchases cap-
ital. The firm is also subject to the idiosyncratic productivity
shocks brought on by sporadic changes in labor productivity.
An equilibrium solution represents a distribution of wealth
such that households are optimally choose their savings and
spending to optimize for utility and smooth consumption.

Now we move on to the mathematical formulation of the
Aiyagari model in terms of dynamic stochastic differential
equations.

3 Aiyagari Model of Income: Formalization

3.1 Households

In order to define the necessary mathematical formulations
of this problem we first define a few terms from the house-
hold’s perspective, which will be used throughout this paper.

z; = Household labor output (1)
wy = Household wages 2)
r, = Risk-free interest rate 3)
a; = Household wealth @)
¢; = Household spending/consumption 5)
D = Borrowing limit (6)

3.1.1 Utility Functional:

As stated above, households spend portions of their wealth
to gain some sort of utility from their consumption, whether
that utility be in the form of satisfaction, happiness, or value.
Their goal is often to smoothen consumption and maximize
utility. This goal is given in the form of the following utility
functional in continuous time.

U = maxE,O/ e Pu(c)dt @)

{C[} 1o

p in this case is traditionally known as the rate of time
preference. It reflects the household’s preferences for present
consumption over future consumption. In other words ap ~ 0
means that that a household prioritizes current spending over
future spending since it increases the present utility. Whereas
a higher p will discount the present value of the utility gained
through consumption, and will place a higher weight on fu-
ture consumption.



In discrete time analogue of the household utility function
can be expressed as

U= maxZeiP’u(C,) 8)
o 5

where p, again, is the degree to which a household priori-
tizes current consumption verses future consumption. If p ~ 1
then the household prioritizes future spending over current
spending.

3.1.2 Utility Function:

The utility function u(c,) in equation (6) and (7) quantifies
the satisfaction, happiness, or value an individual received
from consumption at time ¢. the utility function is typically
non-decreasing, since higher consumption will often lead to
higher utility. However in order to capture the diminishing
marginal utility of consumption, we impose that our utility
function is strictly concave. In other words as consumption
increase the marginal utility gained from consuming one ad-
ditional unit decreases. Given those key features we can pro-
pose a few useful utility function. The first of which is called
constant relative risk aversion (CRRA).

u(c) = )

Or we can use exponential utility.

u(c) = %le*‘* (10)

And lastly we can consider logarithmic utility

u(c) = In(c) (11)
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Figure 1: Utility Functions

3.1.3 Household Dynamics:

Households must also adhere to certain spending dynamics
that relate their consumption wealth and income.

da, = (tht + ra; — C[)dt (12)

From the above equation we can observe that the change in
wealth is function of a households wage income, income via
risk-free investment, and the current consumption. The func-
tion

s(tya,2) = zwy + ray — ¢ (13)

will represent the amount saved by a household at time ¢, and
will be important when solving the system using a mean field
game framework.

We also suject household consumption to a borrowing con-
straint, which expressly prohibits a household from taking on
an excessive amount of debt D.

a; > —D (14)

We also impose the following state constraint boundary con-
dition, to ensure that constraint (14) is never violated.

a <zwr+r(l+a) —ap (15)

3.2 Firms:

On the other side of the interaction with households will be
a representative Neoclassical firm. In order to define the nec-
essary mathematical formulations of the firm-side problem
we will again define a few terms from the firm’s perspective.
These terms in addition to those defined for Households will
be used bellow.

A; = Total factor production (16)
o = Proportion of investment allocated to capital a7
K; = Total capital supply (18)
L = Total labor supply 19)
& = Depreciation rate of capital (20)
Y; = Firm’s output/productivity 21

(22)

A firms productivity is fully characterised by a firms invest-
ment in capital and labor. This is a popular production func-
tion that was first developed by Charles Cobb and Paul Dou-
glas, and its the same production function used by the Aiya-
gari income model.

Y, = AK*L! ¢ (23)

3.2.1 Total Factor Production:

In the simplest case of the Aiyagari model A, sometimes
refered to as the total factor productivity (TFP), is constant.
However A; can also be modeled as a function of time to re-
flect technological progress or other factors affecting produc-
tivity. A simple time-dependant model of the TFP can be
represented as an exponential where Ay is the initial level of
productivity and y* is the rate of technological progress. In
this way we model TFP in way that is analogous to Moore’s
law which describes the exponential growth of the number of
transistors on a microchip. A phenomenon which has a direct
effect on the productivity of digital systems.

A = Age! (24)



3.2.2 Total Labor Supply:

Once again in the simplest case of the Aiyagari model the
total labor supply L is considered constant. However L, can
also be modeled as a function of time to reflect growth in
population or changes in labor supply. We will formalize this
adjustment bellow in section 4.

3.2.3 Firm Side Problem & Derived Quantities:

Regardless of how K; or L; are expressed the firm’s aim to
maximize it production output remains the same. The prob-
lem can be given in terms of the productivity of the firm, ap-
preciation/depreciation of assets, and wage spending.

nI}aLx{AKt“lea — (1, + 8)K; — wiL} (25)

Our aim will be to study the household behavior instead
of the firm-side behavior, so we will not explicitly be using
(25). However the firm’s first order conditions with respect
to capital supply K; allows us to derive an explicit expression
for the interest rate ;.

r=oAK* L7 - § (26)

And the firm’s first order condition with respect to labor sup-
ply L allows to nail down an explicit expression for wages
Wi

wy = (1 — a)AK*L 27

3.2.4 Idiosyncratic Income Shocks:

In reality households are subject to idiosyncratic income
shocks. In continuous time we can either represent these in-
come shock as a diffusion process, where the change in in-
come (z;) can be expressed as

dz = u(z)dt + c*dB, (28)

where sigma is the standard deviation of the magnitude of the
shocks and u(z) is drift of income. There are two ways of
approaching the construction of u(z). First we can assume
that income slowly drifts up as a result of raises in wage or
inflation adjustment. In this case

ulz)=mt+b (29)

where m is the rate at which income drifts up and b is the
average income at time 0. This construction may be useful
if the reader seeks to implement the model for sufficiently
large time horizon. However in the short term, we can treat z;
as a mean reverting process. Under this assumption, we can
construct u(z) as an Ornstein-Uhlenbeck Process.

u(z) =0(z—7z2) (30

Where 6 is the rate of mean reversion, and Z is the average
income to which z; reverts.
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Figure 2: Idiosyncratic Income Shocks

4 Labor Supply Adjusted Model

Incorporating a change in employment or unemployment
status into the total labor supply term in the Aiyagari Model,
which traditionally uses a more simplified labor market rep-
resentation, involves modifying the model to account for dy-
namic changes in labor force participation based on individ-
ual states which are also subject to stochastic changes. To im-
plement this adjustment we adopt Achdou, Han, Lasry, Lions,
and Mol’s use of a 2 state Poisson process to model income
idiosyncrasy.

A two-state Poisson jump process is a type of stochastic
process that alternates between two distinct states, 0 and 1,
with transitions occurring randomly at certain rates. We can
denote the two states as So = unemployed and S| = employed,
the transitions between these states are governed by Poisson
processes with different intensity rates.

Let A be the rate at which transitions occur from Sy to S;
and A be the rate for transitions from S; to Sy. The process
can be described by the following transition probabilities:

P(Si4ar = 1] = 0) = Aoi At G1)

P(SH,N = O|St = 1) = 7\,1()Al (32)

However we propose that Ag; and A are also subject to
random fluctuations. We argue that the transition rates must
not be fixed and instead ought to be sensitive to macroeco-
nomic fluctuations. For instance, during a recession, job-
separation rates might increase (due to layoffs and business
closures), and job-finding rates might decrease (due to re-
duced hiring). Conversely, in a booming economy, job-
finding rates might increase, and job-separation rates might
decrease. Furthermore changes in government policy, such as
increased unemployment benefits or job creation programs,
can affect the incentives for individuals to find or leave
jobs. Similarly, external shocks like technological changes
or global events can rapidly alter the labor market landscape.
Given these realistic conditions we assume that our transition
rates are uniformly distributed.

The job-finding rate Ag; is drawn from a uniform distribu-
tion as follows:

Ao1 ~ Uniform(agi, bo ) (33)

where ag; and bg; are the lower and upper bounds of the dis-
tribution, respectively. Similarly, the job-separation rate Ajg
is drawn from a uniform distribution:

7\410 ~ Uniform(al()vbl()) (34)



where ajg and b are the lower and upper bounds of the dis-
tribution for A;q, respectively.

We then use the above formulation of idiosyncratic em-
ployment changes to dynamically simulate the total labor
supply at each time step in our simulation. We do this by
letting L, be the dynamically adjusting average described bel-

low.
Z0ho1 + Z1h10

L =
' ot + Ao

(35)
This formula computes a weighted average of the productiv-
ities (z;) for employed and unemployed households, where
the weights are the transition probabilities between the states.
This can be interpreted as an expectation of income or pro-
ductivity level, taking into account the likelihood of being in
either state. This allows L; to reasonably estimate the total
labor supply/productivity at any given time step.

Luckily, our labor supply adjustment does not greatly im-
pact the deviating of our mean field game representation of
the Aiyagari model, So we proceed by presenting a general
derivation of the two core PDEs of a mean field game, before
recasting the Labor Ajusted Aiyagari model.

5 General MFG System Derivation

5.1 General HJB Equation Derivation

In this section we derive the Hamilton-Jacobi-Bellman
equation’s generally.The Hamilton-Jacobi-Bellman (HJB)
equation is a cornerstone in the theory of optimal control. It
provides a necessary condition for optimality across a wide
range of control problems, including both deterministic and
stochastic systems. The derivation below outlines the funda-
mental steps involved in arriving at the HJB equation.

Assume a control system described by the differential

equation
X(t) = f(x(t),ut),1) (36)

where x() represents the system state at time ¢, u(f) denotes
the control input, and f is a function defining the system dy-
namics. The objective is to find a control policy u(z) that
minimizes the cost functional

J =) + [ Lo,

fo

u(t),t)dt 37

where g(x(T)) is the terminal cost, and L(x(¢),
running cost.

Step 1: Value Function. Define the value function V as
the minimum cost-to-go (see principle of least action) from
a state x at time ¢, under the given system dynamics and cost

structure:
YR

Step 2: Principle of Optimality. The principle of optimality
states that any optimal path’s subpath is also optimal for its

u(t),t) is the

V(x(t),t) = mln{ )dr} (38)

subproblem. This allows expressing the value function at # +
dt as:

V(x(t +dr),t +dt) = muin {L(x(z),

+V(x() +

u(t),t)de
x(t)de,t + dt)}

(39)

Step 3: Hamilton-Jacobi-Bellman Equation. By expanding
V (x(r) + x(t)dt,t + dt) using Taylor’s series and neglecting
higher-order terms, we obtain:

V(x(t),t) + a—vdt + VV - x(t)dt

or
= muin {L(x(t),u(t),t)dt + V(x(t),1)}

(40)

After simplifying, the HIB equation emerges as:

v

E—l—min{L(x,u,t)+VV-f(x,u,t)}:O 41)
u

This partial differential equation is central to solving optimal

control problems by determining the value function V (x,7)

and thereby the optimal control policy.

5.2 General Focker Plank Equation

In this section we derive the general Kologmorov Focker-
Plank equation. To do this We consider a continuous-time
stochastic process described by the Stochastic Differential
Equation (SDE)

dX[ = ‘Ll(X”t)dt —|—G(X,,t)th

where X; is the state variable at time ¢, u(X;,7) is the drift
coefficient, 6(X;,7) is the diffusion coefficient, and dW; rep-
resents the increment of a Wiener process (or Brownian mo-
tion).

Step 1: Chapman-Kolmogorov Equation. The Chapman-
Kolmogorov equation for two times s < ¢ states the probabil-
ity density function p(x,t|y,s), of the process being in state x
at time ¢, given it was in state y at time s, satisfies

plt[z,0) = [ plxtly.s)p(rislz.0)dy

Step 2: Infinitesimal Generator. The infinitesimal gener-
ator L, acting on functions f of the process’ state, is given
by

Lf(x)= AltigloE[f(XHAz)Ii(;:x] —f(x).

For our SDE, this is

2
LiW) =uen) 2+ Lo L.

Step 3: Derivation of the Fokker-Planck Equation. Con-
sidering a small time increment Az and using the properties
of X;, the Fokker-Planck equation is derived as



dop 0 1% ,
g **a[.u(xaf)PPriﬁ[G (x,t)p].

This equation describes how the probability density of the
state variable X; evolves over time due to both deterministic
drifts and stochastic diffusions.

5.3 Aiyagari Model HJB Equation

In this section we will recast the Aiyagari model, where
the idiosyncratic income changes are represented by a 2 state
Poisson Process, into an HIB equation. To do this we will
cook a bellman equation that serves the encodes similar fea-
tures to the Aiyagari model above.

Consider the following income fluctuation problem in dis-
crete time. Periods are of length A, individuals discount the
future with discount factor

HOVE 42)
and individuals with income y; keep their income with prob-

ability
pi(A) = e M4 43)

and switch to state y_; with probability 1 — p;(A). The Bell-
man equation for this problem is:

vy(ar) = max {u(e) + BA) (s Qi) 0
+ (1= pj(A)v-j(aa))}
subject to
A =Ayj+ra, —c+a 45)
arp > a (46)

functionally the Bellman equation encodes a households
desire to maximize current utility while balancing the proba-
bility of future income shocks on the capacity for consump-
tion to produce utility.

For j =1,2. We will momentarily take A — 0 so we can
use that for A small

B(A) =e P 47
~1—pA

pi(A) =e " (48)
~1-— 7\,jA.

Substituting these into (4) 4we have

max{ c)A+ (1 = pA) (1 = AjA)vj(aria)

=+ ijV,j(atJrA))}

vi(a) = (49)

subject to (45) and (46). Subtracting (1 —pA)v;(a) from both
sides and rearranging, we get

Avj(a;) = max{u YA+ (1 —pA) (vi(arsa) —vj(a)) (50)
+ A (arss) = vi(arsa))}
Dividing by A, taking A — 0 and using that
lim vj(aH‘A) B vj(at)
A —0 A (51)
— tm vi(Ayj +ra; —c+a;) —vj(ar)
A—0 A

= Viar)(vj + ra; — c)

we find (52); The HJB equation for the Aiyagari model.

pvj(a )—maX{ ) +Vi(a)(yj +ra—c) (52)

+A(v_j(a) —vj(a))},

5.4 Aiyagari Model Focker Plank Equation

Recall that under our labor adjustment a household can ei-
ther be employed or unemployed, and that the transition from
one state to another follows a two-state Poisson process. For
the sake of stability we assign an unemployed household a
low productivity state and vice versa; z; € {z5,z/1}. Also re-

call that wealth evolves as follows.

ar = arn —Asj(ar)).



We let Gj(a,t) define the wealth distribution CDF of our
population of households. Such that the bellow quantity rep-
resents the fraction of people with income z; and wealth be-
low a.

Gj(a,t) =P(a; < a,z =z;)

We claim that the probability of an individual having
wealth bellow a is the following. Intuitively this makes sense
since the probability of a household having wealth bellow a
att + A is equal to the probability that a household has wealth
bellow a at the previous time step plus the probability that the
household’s current wealth is greater then a at time ¢ but has
the capacity to cross bellow the threshold a during the next
time step.

Plaia <a)= P(a; < a) +P(a < a < a—Asj(a))
already below threshold a cross threshold a
(53)
which is equivalent to
P(aia < a) =P(a (54)

< a—Asj(a))

Now in order to compute the joint probability of P(a, <
a,z; = zj) we incorporate the probabilities of income shocks
as defined in (47) and (48).

Plaria < a,yrea =y;) = (1 — Aj) Pr(a;
<a—Asj(a),y
=)+ A_;Pr(a (55)
<a—As_j(a),y
=y-j)-

We then use the definition of G;, which yields the follow-
ing.
Gj(a,t +A) = (1 —-A;)Gj(a — Asj(a),t) (56)
+A_;jG_j(a—As_j(a),1)
We then divide out by A, then take A— — 0. Using the fact
that g(a) = 0,G(a), we get the KFP equation.

d

0=——lsj(a)s(a)] —2;g(a) +Ajg-(a),
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