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e State grows exponentially, 2" for
n qubits.

@ The current state of the art
allows for the classical
simulation of a 54-qubit
system(Pednault et al 2019)



A quantum computation can be simulated in polynomial time on a
classical computer if ...
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A noise channel {; = {Ku, ..., K, } where K; is a Kraus Operator.
Each Kraus operator is applied probabilistically.
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Given an arbitrary contraction operator K € R?*?, the associated
column-wise flattened vector has stabilizer decomposition

Z cilsi), |si) €S such that

zr: |ci| < 1.268




The Noise Problem

Rank 2 K-Gadget

Theorem - Extent Bound on Kraus Resource State

Given an arbitrary contraction operator K € R?*?, the associated
column-wise flattened vector has stabilizer decomposition

r

|K) = Z cilsiy, |si) € S such that

i

zr: |C,'| < 1.268

The small extent and numerical simulations indicate that most Kraus
operators can be reasonably represented by a rank 2 stabilizer
decomposition!
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So we choose 2 stabilizer states |0) and |1) to serve as our basis
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Using a Basis Compression
— 1 | =

delta




o 0=.0001 | 9=.001| 6=.01
o = .0001 37782 225963 | 2038344
o = .0005 3011 12167 85849
o =.001 1075 3783 22714
o = .005 107 302 1227
a=.01 41 108 383
a=.05 5 11 31
a=.1 2 4 12

Table: Maximum t with v = L
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@ Map K to a resource state |K)

@ Find stabilizer states that minimize o

© Use a basis compression to Approximate |K®<) ~ |L£)
@ Apply the K-Gadget every time a Kraus operator is applied
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Figure: p = .01

o 5—0001 5—001 0=.01
o = .003562 2215




The Noise Problem
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Questions!
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